Mechanical Properties of Sisal and Corn Starch Mixed Polymer Matrix Composites Using Experimental and Micromechanics

Article Preview

Abstract:

The usage of reinforcing fibers extracted from nature is increasing in the present decade due to increasing the demand for biodegradability and environmentally friendly materials. In this paper, biodegradable sisal fiber and corn starch powder mixed thermoset and thermoplastic composite are prepared and tested for Young’s modulus. The effect of sisal fiber weight fraction on the Young’s modulus is identified at constant content of corn starch powder. Later, using Micromechanics approach and Finite Element Method simulation studies are performed to estimate transverse Modulus, Shear modulus, major and minor Poisson’s ratio of the sisal and starch based polymer composites. It is found that the composites prepared with sisal fiber and corn starch powder are a promising replacement for plastic reinforced composite to promote the biodegradability, especially under high weight fraction of sisal fiber

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-33

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bamdad,B., and Krishna Pillai M., 2017. Green composites made from cellulose nano fibers and bio-based epoxy: processing, performance, and applications. Duxford, UK: Woodhead Publishing.

Google Scholar

[2] [2] Yongsheng, Z., Zhongshun, Y.,Chunbao, Xu., 2017. Bio-based resins for fiber reinforced polymer composites, Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites.https://doi.org/10.1016/B978-0-08-100656-6.00008-X.

DOI: 10.1016/b978-0-08-100656-6.00008-x

Google Scholar

[3] Ren,J.,Fu, H., Ren,T.,Yuan, W., 2009. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77 (3),576–582.

DOI: 10.1016/j.carbpol.2009.01.024

Google Scholar

[4] Richard, F.T. JohnK., 2001.The Effects of Environmental Conditions on the Structural Features and Physico-chemical Properties of Starches. Starch, 53, 513–519.

Google Scholar

[5] Marichelvam,M. K., Jawaid, M., Asim, M., 2019. Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers, 7, 32.

DOI: 10.3390/fib7040032

Google Scholar

[6] Xie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C.H., Xu,J.,Chen, S., 2018. A new biodegradable sisal fiber–starch packing composite with nest structure.Carbohydrate Polymers, 189 (1), 56-64.

DOI: 10.1016/j.carbpol.2018.01.063

Google Scholar

[7] Prasanthi, P., SivajiBabu, K., NiranjanKumar, M. S. R., Eswar Kumar, A., 2019. Analysis of Sisal Fiber Waviness Effect on the Elastic Properties of Natural Composites Using Analytical and Experimental Methods.Journal of Natural Fibers, 14, 1-14.

DOI: 10.1080/15440478.2019.1697987

Google Scholar

[8] Prasanthi,P., SivajiBabu,K., NiranjanKumarM. S. R., RajaVamsi, G.,RaghuRam,N., 2017. Analysis of hybrid composite with moisture defects using finite element method and micromechanics, Material Research Express 4, 105006.

DOI: 10.1088/2053-1591/aa8d2f

Google Scholar

[9] Mancinoa, A., Marannanoa, G., Zuccarelloa, B., 2017. Implementation of eco-sustainable bio composite materials reinforced by optimized agave fibers, Procedia Structural Integrity 8 526–538.

DOI: 10.1016/j.prostr.2017.12.052

Google Scholar

[10] John, S., Amandeep, V., Wayne, H., 2020. Fibre area correction factors (FACF) for the extended rules-of-mixtures for natural fibre reinforced composites. Materials Today: Proceedings 31, S318-S320.https://doi.org/10.1016/j.matpr.2020.01.552.

DOI: 10.1016/j.matpr.2020.01.552

Google Scholar

[11] Naveen, J., Jawaid, Md., Vasanthanathan, A., Muthukumar, C., 2018. Finite element analysis of natural fiber-reinforced polymer composites.Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing Series in Composites Science and Engineering, 153-170 https://doi.org/10.1016/B978-0-08-102289-4.00009-6.

DOI: 10.1016/b978-0-08-102289-4.00009-6

Google Scholar

[12] Mahboob, Z., Sawi I.E.I., Radovan, Z., Fawaz, Z.,&Habiba, B., 2016. Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing. 92. 118-133 https://doi.org/10.1016/j.compositesa. 2016.11.007.

DOI: 10.1016/j.compositesa.2016.11.007

Google Scholar

[13] Petrone, G.,Meruane, V., 2016. Mechanical properties updating of a non-uniform natural fibre composite panel by means of a parallel genetic algorithm.Composites Part A: Applied Science and Manufacturing. 94. 226-233. https://doi.org/10.1016/j.compositesa.2016.12.017.

DOI: 10.1016/j.compositesa.2016.12.017

Google Scholar

[14] Silva R.V., Spinelli,D., Bose, F.W.W., ClaroNeto,S., Chierice G.O., Tarpani J.R.,2006, Fracture toughness of natural fibers/castor oil polyurethane composites,Composites Science and Technology, 66 (10),1328-1335. https://doi.org/10.1016/j.compscitech.2005.10.012.

DOI: 10.1016/j.compscitech.2005.10.012

Google Scholar

[15] Timothy, K.M. Albert, U., Chinnasamy V., 2020. Techniques for Modelling and Optimizing the Mechanical Properties of Natural Fiber Composites: A Review.Fibers, 9, 6. https://doi.org/10.3390/fib9010006.

Google Scholar

[16] Pinkie, E.Z., Thabile, N., Thulisile,T. M., Mike T. M., Justice M. T., 2019. Effects ofenzymatic treatment of sisal fibres on tensile strength andmorphology, Scientific African, 6, e00136. https://doi.org/10.1016/j.sciaf.2019.e00136.

DOI: 10.1016/j.sciaf.2019.e00136

Google Scholar

[17] Callens, M.G., Gorbatikh, L., Verpoest,I., 2014. Ductile steel fibre composites with brittle and ductile matrices, Composites Part A: Applied Science and Manufacturing,61,235-244.

DOI: 10.1016/j.compositesa.2014.02.006

Google Scholar

[18] Liang, J.Z., 2016. Predictions of Young's Modulus of Polymer Composites Reinforced with Short Natural Fibers,  Journal of Macromolecular Science, Part B, 55: 6, 566 574, https://doi.org/10.1080/00222348.2016.1168562.

DOI: 10.1080/00222348.2016.1168562

Google Scholar

[19] Prasanthi, P., SivajiBabu, K., NiranjanKumar, M.S.R., Eswar Kumar, A., 2020. Comparison of Elastic Properties of Different Shaped Particle Reinforced Composites Using Micromechanics and Finite Element Method.International Journal of Computational Materials Science and Engineering. 09. 2., https://doi.org/10.1142/S2047684120500116.

DOI: 10.1142/s2047684120500116

Google Scholar

[20] [20] Jong, L., 2016. Particle size and particle–particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber, European Polymer Journal,74,136 147. https://doi.org/10.1016/j.eurpolymj.2015.11.018.

DOI: 10.1016/j.eurpolymj.2015.11.018

Google Scholar

[21] Sun, Q., Xi, Li, T., Li, Y.,Xiong, L., 2014. Characterization of Corn Starch Films Reinforced with CaCO3 Nanoparticles. PloS one. 9. e106727. https://doi.org/10.1371/journal.pone. 0106727.

DOI: 10.1371/journal.pone.0106727

Google Scholar

[22] Abass, A.O., Abuodha, S. O., John, M., 2018. Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete. Fibers. 6. 53. https://doi.org/10.3390/fib6030053.

DOI: 10.3390/fib6030053

Google Scholar

[23] Oliveira, C. G.D., Margem, F.M., Monteiro, S.N., Lopes, F.P.D., 2017. Comparison between tensile behavior of epoxy and polyester matrix composites reinforced with eucalyptus fibers. Journal of Materials Research and Technology. 6, 4, 406-410 https://doi.org/10.1016/j.jmrt. 2017.08.002.

DOI: 10.1016/j.jmrt.2017.08.002

Google Scholar

[24] Jane,J., Shen,L., Wang,L., Maningat,C. C., 1992. Preparation and Properties of Small-Particle Corn Starch, Cereal Chemistry. 69(3), 280-283.

Google Scholar

[25] Ibrahim, M.I.J. Sapuan, S.M., Zainudin, E. S., Zuhri, M.Y.M., 2019. Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers. International Journal of Food Properties. 22, 1, 925-941. https://doi.org/10.1080/10942912.2019. 1618324.

DOI: 10.1080/10942912.2019.1618324

Google Scholar

[26] Sitticharoen, W., Aukaranarakul, S.,Kantalue, K., 2019. Study of Thermal and Mechanical Properties of LLDPE/Sugarcane bagasse/Eggshell Hybrid Biocomposites, Walailak Journal of Science and Technology, 16(10). https://doi.org/10.48048/wjst.2019.4261.

DOI: 10.48048/wjst.2019.4261

Google Scholar