[1]
Fayomi, O. S. I. (2018Inegbenebor, A. O., Bolu, C. A., Babalola, P. O.,& Inegbenebor, A. I., Aluminum silicon carbide particulate metal matrix composite development via stir casting processing. Silicon, 10(2), 343-347.
DOI: 10.1007/s12633-016-9451-7
Google Scholar
[2]
Natrayan, L., & Kumar, M. S. (2020). Optimization of wear behaviour on AA6061/Al2O3/ SiC metal matrix composite using squeeze casting technique–Statistical analysis. Materials Today: Proceedings, 27, 306-310.
DOI: 10.1016/j.matpr.2019.11.038
Google Scholar
[3]
Raturi, H. P., Prasad, L., Pokhriyal, M., & Kumar, A. (2019). Study on Wear Behavior of Al-Based Hybrid Metal Matrix Composites Reinforced with Al 2 O 3/SiC Particles. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) (pp.17-25). Springer, Singapore.
DOI: 10.1007/978-981-13-2697-4_2
Google Scholar
[4]
Chandramohan, G., Basavarajappa, S., Mahadevan, A., Thangavelu, M., Subramanian, R., & Gopalakrishnan, P. (2007). Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear, 262(7-8), 1007-1012.
DOI: 10.1016/j.wear.2006.10.016
Google Scholar
[5]
Dharmalingam, S. Investigations on tribological behaviour of aluminium alloy metal matrix and hybrid composites.
Google Scholar
[6]
Praveen, D. V., Raju, D. R., & Raju, M. V. (2021). Investigation on Wear Properties of Nickel-Coated Al 2 O 3P-Reinforced AA-7075 Metal Matrix Composites Using Grey Relational Analysis. Trends in Mechanical and Biomedical Design, 819-829.
DOI: 10.1007/978-981-15-4488-0_69
Google Scholar
[7]
Veeravalli, R. R., Nallu, R., & Mohiuddin, S. M. M. (2016). Mechanical and tribological properties of AA7075–TiC metal matrix composites under heat treated (T6) and cast conditions. Journal of Materials research and Technology, 5(4), 377-383.
DOI: 10.1016/j.jmrt.2016.03.011
Google Scholar
[8]
B.K. Yen and T. Ishihara, Effect of Humidity on Friction and Wear of Al-Si Eutectic Alloy and A1-Si Alloy-Graphite Composites, Wear, 1996, 198, p.169–175Fayomi, O. S. I. (2018Inegbenebor, A. O., Bolu, C. A., Babalola, P. O.,& Inegbenebor, A. I., Aluminum silicon carbide particulate metal matrix composite development via stir casting processing. Silicon, 10(2), 343-347.
DOI: 10.1016/0043-1648(96)06955-4
Google Scholar
[9]
Shoujiang, Q., Lin, G and Jiecai, H. SiCp /Al Composites Fabricated by Modified Squeeze Casting Technique,, J. Mater. Sci. Technol., Vol.23, 2007, pp.641-644.
Google Scholar
[10]
L.Rajeshkumar A.Saravanakumar, V. Bhuvaneswari, and G. Gokul. Optimization of wear behaviour for AA2219-MoS2 metal matrix composites in dry and lubricated condition., Materials Today: Proceedings 27 (2020): 2645-2649.
DOI: 10.1016/j.matpr.2019.11.087
Google Scholar
[11]
Saravanakumar, A., Ravikanth, D., Rajeshkumar, L., Balaji, D., & Ramesh, M. (2021, February). Tribological behaviour of MoS2 and graphite reinforced aluminium matrix composites. In IOP Conference Series: Materials Science and Engineering (Vol. 1059, No. 1, p.012021). IOP Publishing.
DOI: 10.1088/1757-899x/1059/1/012021
Google Scholar
[12]
Zhilyaev, A. P., Lee, S., Nurislamova, G. V., Valiev, R. Z., & Langdon, T. G. (2001). Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta materialia, 44(12), 2753-2758.
DOI: 10.1016/s1359-6462(01)00955-1
Google Scholar
[13]
Kraghelsky, I. V. (1965). Calculation of wear rate.
Google Scholar
[14]
Dharmalingam, S., Subramanian, R., Somasundara Vinoth, K., & Anandavel, B. (2011). Optimization of tribological properties in aluminum hybrid metal matrix composites using gray-taguchi method. Journal of Materials Engineering and Performance, 20(8), 1457-1466.
DOI: 10.1007/s11665-010-9800-4
Google Scholar
[15]
Prabhakar, G. V. N. B., Kumar, Y. P., Kumar, P. D., Kumar, B. P., Raju, M. G., Naseema, S., & Sunil, B. R. (2019). Producing Al5083-CNT composites by friction stir processing: influence of grain refinement and CNT on mechanical and corrosion properties. Materials Today: Proceedings, 15, 44-49.
DOI: 10.1016/j.matpr.2019.05.022
Google Scholar
[16]
Radhika, N., Subramanian, R., Prasat, S. V., & Anandavel, B. (2012). Dry sliding wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites. Industrial Lubrication and Tribology.
DOI: 10.1108/00368791211262499
Google Scholar
[17]
V. V. Kondaiah, P. Pavanteja, P. Afzal Khan, S. Anand Kumar, Ravikumar Dumpala, B. Ratna Sunil, Materials Today: Proceedings 4 (2017) 6671–6677.
DOI: 10.1016/j.matpr.2017.06.441
Google Scholar
[18]
Sahin Y and O¨ zdin K. A model for the abrasive wear behaviour of aluminium based composites. J Mater Des 2008; 29: 728–733.
DOI: 10.1016/j.matdes.2007.02.013
Google Scholar
[19]
G.J. Howell and A. Ball, Dry Sliding Wear of Particulate-Reinforced Aluminium Alloys Against Automobile Friction Materials, Wear, 1995, 181–183(1), p.379–390.
DOI: 10.1016/0043-1648(95)90045-4
Google Scholar
[20]
Chowdhury, M. A., Khalil, M. K., Nuruzzaman, D. M., & Rahaman, M. L. (2011). The effect of sliding speed and normal load on friction and wear property of aluminum. International Journal of Mechanical & Mechatronics Engineering, 11(1), 45-49.
Google Scholar
[21]
Siva Sankara Raju, R., Venkata Siva, B., & Srinivasa Rao, G. (2020). Quantitative analysis of tribological performance on Al–CSA composite using orthogonal array. In Advances in applied mechanical engineering (pp.381-388). Springer, Singapore.
DOI: 10.1007/978-981-15-1201-8_43
Google Scholar