Hybrid Metallic and Composite Armoring Solution for Blast Protected Vehicles

Article Preview

Abstract:

Dedicated metal armor protection for land transport vehicles is an effective solution against blast threats. However, the added weight of these solutions can reduce the vehicle's maneuverability and, indirectly, its maximum payload capacity. To overcome this weight problem, the use of composite materials as additional armor for the vehicle can be an innovative and lightweight solution. In previous studies, different configurations have been subjected to the blast effect in order to analyze and understand their dynamic behavior. The first fiber reinforcements used for composite materials, based on stacked layers of E-glass fabric, were able to withstand dynamic blast loads. However, these reinforcements tend to have the same performance as the all-steel solution for the same areal weight. Therefore, the objective of this study is to investigate the use of 3D woven fiber reinforcements based on E-glass yarn in composite materials for better dynamic performance under blast loading. The fabricated targets were tested against the same blast threat in a free field configuration. The distance between the charge and the targets was kept constant (except for the full thickness 3D woven composite). During the blast, the dynamic deformation in the thickness direction was recorded and different targets were compared. According to the resulting dynamic deformation under the impact of the blast, a better performance of the full thickness 3D woven composite material matched with the protective steel plate was revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-220

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Boussu, S. Picard, et D. Soulat, Interesting mechanical properties of 3D warp interlock fabrics. 2017.

DOI: 10.1007/978-3-319-69050-6_3

Google Scholar

[2] L. Tong, A. P. Mouritz, et M. K. Bannister, « 3D Woven Composites », in 3D Fibre Reinforced Polymer Composites, Oxford: Elsevier Science, 2002, p.107‑136.

DOI: 10.1016/b978-008043938-9/50017-x

Google Scholar

[3] A. Voisin, J. Pariente, S. Lemercier, D. Soulat, et F. Boussu, Different composite behaviours under blast loading, vol. 812 KEM. 2019.

DOI: 10.4028/www.scientific.net/KEM.812.84

Google Scholar

[4] A. Miravete, « Introduction: Why are 3-D textile technologies applied to composite materials? », in 3-D Textile Reinforcements in Composite Materials, A. Miravete, Éd., in Woodhead Publishing Series in Composites Science and Engineering. , Woodhead Publishing, 1999, p.1‑8.

DOI: 10.1533/9781845691929.1

Google Scholar

[5] A. P. Mouritz, M. K. Bannister, P. J. Falzon, et K. H. Leong, « Review of applications for advanced three-dimensional fibre textile composites », Compos. Part Appl. Sci. Manuf., vol. 30, no 12, p.1445‑1461, 1999.

DOI: 10.1016/S1359-835X(99)00034-2

Google Scholar

[6] S. Z. Sheng et S. Van Hoa, « Modeling of 3D Angle Interlock Woven Fabric Composites », J. Thermoplast. Compos. Mater., vol. 16, no 1, p.45‑58, janv. 2003.

DOI: 10.1177/0892705703016001206

Google Scholar

[7] M. Ansar, X. Wang, et C. Zhou, « Modeling strategies of 3D woven composites: A review », Compos. Struct., vol. 93, no 8, p.1947‑1963, 2011.

DOI: 10.1016/j.compstruct.2011.03.010

Google Scholar

[8] L. Taylor, « Advances in the Manufacture of 3-D Preform Reinforcement for Advanced Structural Composites in Aerospace », in DTI Global Watch Technology Mission Dissemination, HYBRIMAT 3 & 4, oct. 2006. doi: URN 06/1218.

Google Scholar

[9] A. P. Mouritz, « Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts », Compos. Part Appl. Sci. Manuf., vol. 125, p.105502, 2019.

DOI: 10.1016/j.compositesa.2019.105502

Google Scholar

[10] J. E. Slater, « Selection of a blast-resistant GRP composite panel design for naval ship structures », Mar. Struct., vol. 7, no 2, p.417‑440, janv. 1994.

DOI: 10.1016/0951-8339(94)90033-7

Google Scholar

[11] G. S. Langdon, W. C. Lee, et L. A. Louca, « The influence of material type on the response of plates to air-blast loading », Int. J. Impact Eng., vol. 78, p.150‑160, avr. 2015.

DOI: 10.1016/j.ijimpeng.2014.12.008

Google Scholar

[12] S. A. Tekalur, K. Shivakumar, et A. Shukla, « Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads », Mar. Compos. Sandw. Struct., vol. 39, no 1, p.57‑65, janv. 2008.

DOI: 10.1016/j.compositesb.2007.02.020

Google Scholar

[13] A. Wright et M. French, « The response of carbon fibre composites to blast loading via the Europa CAFV programme », J. Mater. Sci., vol. 43, no 20, p.6619‑6629, oct. 2008.

DOI: 10.1007/s10853-008-2787-7

Google Scholar

[14] K. Huang, A. V. Rammohan, U. Kureemun, W. S. Teo, L. Q. N. Tran, et H. P. Lee, « Shock wave impact behavior of flax fiber reinforced polymer composites », Compos. Part B Eng., vol. 102, p.78‑85, oct. 2016.

DOI: 10.1016/j.compositesb.2016.07.014

Google Scholar

[15] Z. Eren, Z. Kazancı, et H. S. Türkmen, « Repeated Air Blast Response of Sisal Fibers Reinforced Bio-composites », Int. Symp. Dyn. Response Fail. Compos. Mater. Draf2016, vol. 167, p.197‑205, janv. 2016.

DOI: 10.1016/j.proeng.2016.11.688

Google Scholar

[16] A. S. Fallah, K. Micallef, G. S. Langdon, W. C. Lee, P. T. Curtis, et L. A. Louca, « Dynamic response of Dyneema® HB26 plates to localised blast loading », Int. J. Impact Eng., vol. 73, p.91‑100, nov. 2014.

DOI: 10.1016/j.ijimpeng.2014.06.014

Google Scholar

[17] X. Li, M. Y. Yahya, A. B. Nia, Z. Wang, J. Yang, et G. Lu, « Dynamic failure of basalt/epoxy laminates under blast—Experimental observation », Int. J. Impact Eng., vol. 102, p.16‑26, avr. 2017.

DOI: 10.1016/j.ijimpeng.2016.12.001

Google Scholar

[18] J. LeBlanc, A. Shukla, C. Rousseau, et A. Bogdanovich, « Shock loading of three-dimensional woven composite materials », Compos. Struct., vol. 79, no 3, p.344‑355, 2007.

DOI: 10.1016/j.compstruct.2006.01.014

Google Scholar

[19] A. Kerber, A. Gargano, K. Pingkarawat, et A. P. Mouritz, « Explosive blast damage resistance of three-dimensional textile composites », Compos. Part Appl. Sci. Manuf., vol. 100, p.170‑182, 2017.

DOI: 10.1016/j.compositesa.2017.05.005

Google Scholar

[20] Z. Kazancı, « A review on the response of blast loaded laminated composite plates », Dyn. Load. Asp. Compos. Mater., vol. 81, p.49‑59, févr. 2016.

DOI: 10.1016/j.paerosci.2015.12.004

Google Scholar

[21] J. Hu, « Multilayer woven fabrics », in 3-D Fibrous Assemblies Properties, Applications and Modelling of Three-Dimensional Textile Structures, 1st edition., Woodhead Publishing, 2008, p.280.

DOI: 10.1201/9781439832394.ch4

Google Scholar

[22] S. Nauman, I. Cristian, et F. Boussu, « Geometrical modelling of angle warp interlock fabrics », J. Text. Inst., vol. 103, no 7, 2012.

DOI: 10.1080/00405000.2011.606981

Google Scholar

[23] F. Boussu et X. Legrand, « Technical and economical performances of 3D warp interlock structures », in International SAMPE Symposium and Exhibition (Proceedings), 2008.

Google Scholar

[24] L. Lee, S. Rudov-Clark, A. P. Mouritz, M. K. Bannister, et I. Herszberg, « Effect of weaving damage on the tensile properties of three-dimensional woven composites », Compos. Struct., vol. 57, no 1‑4, p.405‑413, juill. 2002.

DOI: 10.1016/S0263-8223(02)00108-3

Google Scholar

[25] P. J. Callus, A. P. Mouritz, M. K. Bannister, et K. H. Leong, « Tensile properties and failure mechanisms of 3D woven GRP composites », Compos. Part Appl. Sci. Manuf., vol. 30, no 11, p.1277‑1287, 1999.

DOI: 10.1016/S1359-835X(99)00033-0

Google Scholar

[26] B. N. Cox, M. S. Dadkhah, et W. L. Morris, « On the tensile failure of 3D woven composites », Compos. Part Appl. Sci. Manuf., vol. 27, no 6, p.447‑458, 1996.

DOI: 10.1016/1359-835X(95)00053-5

Google Scholar

[27] C. Ha-Minh (Ha Minh), « Comportement mécanique des matériaux tissés soumis à un impact balistique : approches expérimentale, numérique et analytique », Lille, 2011. [En ligne]. Disponible sur: http://www.theses.fr/2011LIL10184/document

Google Scholar

[28] B. Provost, « Etude et évaluation d'une solution composite à renfort tissé interlock pour la protection balistique de véhicule », 2013. [En ligne]. Disponible sur: http://www.theses.fr/2013VALE0003/document

Google Scholar

[29] S. Nauman, « Geometrical modelling and characterization of 3D warp interlock composites and their on-line structural health monitoring using flexible textile sensors », PhD Thesis, 2011. [En ligne]. Disponible sur: http://www.theses.fr/2011LIL10010/document

Google Scholar

[30] M. Lefebvre, « Résistance à l'impact balistique de matériaux composites à renforts Interlocks tissés : application au blindage de véhicules », 2011. [En ligne]. Disponible sur: http://www.theses.fr/2011VALE0030/document

Google Scholar

[31] A. Voisin, « Analyse et compréhension du comportement dynamique de nouvelles solutions de protection soumises à un effet de souffle », 2019. [En ligne]. Disponible sur: http://www.theses.fr/2019LILUI017

Google Scholar

[32] H. L. Yi, « Conventional Approach on Manufacturing 3D Woven Preforms Used for Composites », J. Ind. Text., vol. 34, no 1, p.39‑50, juill. 2004.

DOI: 10.1177/1528083704045847

Google Scholar

[33] S. N. Raman, T. Ngo, P. Mendis, et T. Pham, « Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast », Adv. Mater. Sci. Eng., vol. 2012, no 1, p.754142, janv. 2012.

DOI: 10.1155/2012/754142

Google Scholar

[34] A. Schiffer et V. L. Tagarielli, « The response of circular composite plates to underwater blast: Experiments and modelling », J. Fluids Struct., vol. 52, p.130‑144, janv. 2015.

DOI: 10.1016/j.jfluidstructs.2014.10.009

Google Scholar