[1]
W. Liu, Y. Shi, H. Hao, J. Cui, Experimental and numerical study on dynamic behavior of laminated glass window under combustible gas explosions, Eng. Struct. 300 (2023) 117159.
DOI: 10.1016/j.engstruct.2023.117159
Google Scholar
[2]
A. Zemanová, P. Hála, P. Konrád, R. Sovják, M. Šejnoha, Gradual fracture of layers in laminated glass plates under low-velocity impact, Comput. Struct. 283 (2023) 107053.
DOI: 10.1016/j.compstruc.2023.107053
Google Scholar
[3]
Z. Li, W. Chen, H. Hao, Performance of reinforced lightweight geopolymer composite panels subjected to windborne debris impacts, Constr. Build. Mater. 394 (2023) 132264.
DOI: 10.1016/j.conbuildmat.2023.132264
Google Scholar
[4]
J. E. Minor, Windborne debris and the building envelope, J. Wind Eng. Ind. Aerodyn. 53 (1994) 207-227.
Google Scholar
[5]
S. M. Gebru, Calculation of wind-borne debris impact in tornado event, https://api.semanticscholar.org/CorpusID:117201720.
Google Scholar
[6]
F. Wang, P. Huang, R. Zhao, H. Wu, M. Sun, Z. Zhou, Y. Xing, Predicting trajectories of plate-type wind-borne debris in turbulent wind flow with uncertainties, Infrastruct. 8 (12) (2023) 180.
DOI: 10.3390/infrastructures8120180
Google Scholar
[7]
American Society of Testing and Materials, Standard specification for performance of exterior windows, curtain walls, doors, and impact protective systems impacted by windborne debris in hurricanes. ASTM E 1996 - 09, United States.
DOI: 10.1520/e1996-02
Google Scholar
[8]
American Society of Testing and Materials, Standard test methods for performance of exterior windows, curtain walls, doors, and impact protective systems impacted by missile(s) and exposed to cyclic pressure differentials. ASTM E 1886 - 05, United States.
DOI: 10.1520/e1886-04
Google Scholar
[9]
American national standard for safety glazing materials for glazing motor vehicles and motor vehicle equipment operating on land highways - safety standard. ANSI/SAE Z 26.1-2007.
DOI: 10.4271/j3097z26_201905
Google Scholar
[10]
J. Xu, Y. Sun, B. Liu, M. Zhu, X. Yao, Y. Yan, Y. Li, X. Chen, Experimental and macroscopic investigation of dynamic crack patterns in PVB laminated glass sheets subject to light-weight impact, Eng. Fail. Anal. 18 (6) (2011) 1605–1612.
DOI: 10.1016/j.engfailanal.2011.05.004
Google Scholar
[11]
M. S. Shetty, L. R. Dharani, D. S. Stutts, Analysis of laminated architectural glazing subjected to wind load and windborne debris impact, ISRN Civil Eng. (2012) 1–9.
DOI: 10.5402/2012/949070
Google Scholar
[12]
J. Belis, C. Bedon, C. Louter, C. Amadio, R. Van Impe, Experimental and analytical assessment of lateral torsional buckling of laminated glass beams, Eng. Struct. 51 (2013) 295–305.
DOI: 10.1016/j.engstruct.2013.02.002
Google Scholar
[13]
Y. Peng, J. Yang, C. Deck, R. Willinger, Finite element modeling of crash test behavior for windshield laminated glass, Int. J. Impact Eng. 57 (2013) 27–35.
DOI: 10.1016/j.ijimpeng.2013.01.010
Google Scholar
[14]
X. Zhang, H. Hao, G. Ma, Laboratory test and numerical simulation of laminated glass window vulnerability to debris impact, Int. J. Impact Eng. 55 (2013) 49–62.
DOI: 10.1016/j.ijimpeng.2013.01.002
Google Scholar
[15]
C. Bedon, J. Belis, A. Luible, Assessment of existing analytical models for the lateral torsional buckling analysis of PVB and SG laminated glass beams via viscoelastic simulations and experiments, Eng. Struct. 60 (2014) 52–67.
DOI: 10.1016/j.engstruct.2013.12.012
Google Scholar
[16]
X. Chen, A. H. C. Chan, Modelling impact fracture and fragmentation of laminated glass using the combined finite-discrete element method, Int. J. Impact Eng. 112 (2017) 15–29.
DOI: 10.1016/j.ijimpeng.2017.10.007
Google Scholar
[17]
I. Mohagheghian, M. N. Charalambides, Y. Wang, L. Jiang, X. Zhang, Y. Yan, A. J. Kinloch, J. P. Dear, Effect of the polymer interlayer on the high-velocity soft impact response of laminated glass plates, Int. J. Impact Eng. 120 (2018) 150–170.
DOI: 10.1016/j.ijimpeng.2018.06.002
Google Scholar
[18]
X. E. Wang, J. Yang, H. Xu, Experimental investigation on the impact resistance of laminated glass with various glass make-ups, DOAJ (2018).
Google Scholar
[19]
M. Kozłowski, K. Zemła, M. Kosmal, O. Kopyłow, Experimental and FE study on impact strength of toughened glass–retrospective approach, Mater. 14 (24) (2021) 7658.
DOI: 10.3390/ma14247658
Google Scholar
[20]
B. Huang, W. Hu, K. Xu, X. Guan, W. Lu, Experimental and numerical investigation on glass panel subjected to pendulum impact, Int. J. Impact Eng. 173 (2022) 104457.
DOI: 10.1016/j.ijimpeng.2022.104457
Google Scholar
[21]
H. S. Kim, B. K. Ha, B. Y. Yoo, H. S. Jeong, S. H. Park, Numerical prediction of dynamic fracture strength of edge-mounted non-symmetric tempered glass panels under steel ball drop impact, J. Mater. Res. Technol. 17 (2022) 270–281.
DOI: 10.1016/j.jmrt.2021.12.134
Google Scholar
[22]
X. Chen, X. Chen, A. H. C. Chan, Y. Cheng, Parametric analyses on the impact fracture of laminated glass using the combined finite-discrete element method, Compos. Struct. 297 (2022) 115914.
DOI: 10.1016/j.compstruct.2022.115914
Google Scholar
[23]
C. Bedon, Frequency-based early crack detection and damage severity measure in structural glass members: application to beams in bending, J. Archit. Eng. 30 (2024) 4.
DOI: 10.1061/jaeied.aeeng-1670
Google Scholar
[24]
T. J. Holmquist, G. R. Johnson, C. Lopatin, D. Grady, E. S. Hertel, High strain rate properties and constitutive modeling of glass, Albuquerque, NM, United States: Sandia National Labs (1995).
DOI: 10.2172/41367
Google Scholar
[25]
D. S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, T. Berstad, D. Cronin, Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna, In Proceeding 4th European LS-DYNA Users Conference (2003) 47-60.
Google Scholar
[26]
M. Froli, L. Lani, Adhesion, creep and relaxation properties of PVB in laminated safety glass, GPD Finland: Proceedings of the glass performance days, Finland, Tampere (2011).
Google Scholar