[1]
Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer- fiber composites. Composite Structures, 182, 36–53. https://doi.org/10.1016/ j.compstruct.2017.08.088.
DOI: 10.1016/j.compstruct.2017.08.088
Google Scholar
[2]
Zhang, J., Chen, D.-R., & Chen, S.-C. (2022). A review of emission characteristics and control strategies for particles emitted from 3d fused deposition modeling (fdm) printing. Building and Environment, 221.
DOI: 10.1016/j.buildenv.2022.109348
Google Scholar
[3]
Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Bhagia, M., Yoo, C. G., Zhao, X., Kunc, V., Pu, Y., Ozcan, S., Ragauskas, A. J., & Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). (2021). Critical review of fdm 3d printing of pla biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today, 24(C).
DOI: 10.1016/j.apmt.2021.101078
Google Scholar
[4]
Prasad, M., Reddy, P., Manoj, & Murthy. (2014). Analysis of Sandwich Beam. International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue. https://doi.org/oai:ojs.www.ijseat.com:article/241.
Google Scholar
[5]
El Hassan, A.; Ahmed, W.; Zaneldin, E. Investigating the Impact of Inclusions on the Behavior of 3D-Printed Composite Sandwich Beams. Buildings 2022, 12, 1448.
DOI: 10.3390/buildings12091448
Google Scholar
[6]
Sayyad, A. S., & Ghugal, Y. M. (2017). Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature. Composite Structures, 171, 486-504.
DOI: 10.1016/j.compstruct.2017.03.053
Google Scholar
[7]
Castanié, B., Bouvet, C., & Ginot, M. (2020). Review of composite sandwich structure in aeronautic applications. Composites Part C: Open Access, 1, 100004.
DOI: 10.1016/j.jcomc.2020.100004
Google Scholar
[8]
Hamidi, F., & Aslani, F. (2019). Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Construction and Building Materials, 218, 582-609.
DOI: 10.1016/j.conbuildmat.2019.05.140
Google Scholar
[9]
Ramnath, B. V., Alagarraja, K., & Elanchezhian, C. (2019). Review on sandwich composite and their applications. Materials Today: Proceedings, 16, 859-864.
DOI: 10.1016/j.matpr.2019.05.169
Google Scholar
[10]
Patekar, V., & Kale, K. (2022). State of the art review on mechanical properties of sandwich composite structures. Polymer Composites, 43(9), 5820-5830.
DOI: 10.1002/pc.26989
Google Scholar
[11]
Feraboli, P. (2008). Development of a corrugated test specimen for composite materials energy absorption. Journal of Composite Materials, 42(3), 229-256.
DOI: 10.1177/0021998307086202
Google Scholar
[12]
Zhao, X., Wei, L., Wen, D., Zhu, G., Yu, Q., & Ma, Z. D. (2021). Bending response and energy absorption of sandwich beams with novel auxetic honeycomb core. Engineering Structures, 247, 113204.
DOI: 10.1016/j.engstruct.2021.113204
Google Scholar
[13]
Sarvestani, H. Y., Akbarzadeh, A. H., Mirbolghasemi, A., & Hermenean, K. (2018). 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179-193.
DOI: 10.1016/j.matdes.2018.08.061
Google Scholar
[14]
Zhang, Z., Lei, H., Xu, M., Hua, J., Li, C., & Fang, D. (2019). Out-of-plane compressive performance and energy absorption of multilayer graded sinusoidal corrugated sandwich panels. Materials & Design, 178, 107858.
DOI: 10.1016/j.matdes.2019.107858
Google Scholar
[15]
Pirouzfar, S., & Zeinedini, A. (2021, October). Effect of geometrical parameters on the flexural properties of sandwich structures with 3D-printed honeycomb core and E-glass/epoxy Face-sheets. In Structures (Vol. 33, pp.2724-2738). Elsevier.
DOI: 10.1016/j.istruc.2021.06.033
Google Scholar
[16]
Pinho, A. C., & Piedade, A. P. (2021). Sandwich multi-material 3D-printed polymers: influence of aging on the impact and flexure resistances. Polymers, 13(22), 4030.
DOI: 10.3390/polym13224030
Google Scholar
[17]
Hashemi, M., Hatami, O., & Tajbakhsh, M. R. (2023). Investigation of the performance of the structure and energy absorption in sandwich panels of PLA/TPU manufactured by the FFF technique. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207231188827.
DOI: 10.1177/14644207231188827
Google Scholar
[18]
Ahmed, W., Ahmed, S., Alnajjar, F., & Zaneldin, E. (2021). Mechanical performance of three-dimensional printed sandwich composite with a high-flexible core. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(6), 1382-1400.
DOI: 10.1177/14644207211011729
Google Scholar
[19]
Stratford, T.; Cadei, J. Elastic analysis of adhesion stresses for the design of a strengthening plate bonded to a beam. Constr. Build. Mater. 2006, 20, 34–45. [Google Scholar] [CrossRef].
DOI: 10.1016/j.conbuildmat.2005.06.041
Google Scholar
[20]
Szeptyński, P. Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams. Compos. Struct. 2019, 241, 112088. [Google Scholar] [CrossRef].
DOI: 10.1016/j.compstruct.2020.112088
Google Scholar
[21]
Stitic, A.; Nguyen, A.C.; Rezaei Rad, A.; Weinand, Y. Numerical Simulation of the Semi-Rigid Behaviour of Integrally Attached Timber Folded Surface Structures. Buildings 2019, 9, 55. [Google Scholar] [CrossRef].
DOI: 10.3390/buildings9020055
Google Scholar
[22]
Wang, H. et al. (2023) 'Three-point bending response and energy absorption of novel sandwich beams with combined re-entrant double-arrow auxetic honeycomb cores', Composite Structures, 326, p.117606.
DOI: 10.1016/j.compstruct.2023.117606
Google Scholar
[23]
Zhai, Z. et al. (2025) 'Novel sandwich structures with double-row and crossed pyramidal lattice cores: Design, fabrication and bending behavior', Engineering Failure Analysis, 170, p.109267.
DOI: 10.1016/j.engfailanal.2025.109267
Google Scholar