Modeling and Analysis of Hydrodynamics in Filtration Systems

Article Preview

Abstract:

This study presents a hybrid CFD-ML model for liquid filtration systems, overcoming limitations of traditional approaches. The model accurately predicts pressure drop (2.3% RMSE) and filtration rates, outperforming standard CFD (8.7%) and Darcy models (12.4%). By integrating the Kozeny-Carman equation with an ML-enhanced k-ϵ turbulence model, it achieves 65% faster computations (12 vs. 34 minutes). Validations using nanofiber membranes show high accuracy (3.1–4.8% error, R² = 0.95–0.97). Applications in water treatment and oil refining yield 12% energy savings in reverse osmosis and 15% efficiency gains in oil-water separation at optimal porosity (0.80) and velocity (0.08 m/s). Sensitivity analyses reveal porosity and velocity as critical parameters, with a 10% porosity increase reducing pressure drop by 8 kPa. While the model advances filtration technology by capturing turbulence and adapting to diverse materials, it neglects fouling dynamics and assumes Newtonian behavior. Future work should address multiphase flows, dynamic fouling, and alternative characterization methods to broaden industrial use in sustainable processes like water purification and biotechnology. The framework offers actionable insights for designing efficient, cost-effective filtration systems with real-time control potential.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-225

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Al-akoum, M. Mercier-Bonin, L. Ding, C. Fonade, P. Aptel, Comparison of three different systems used for flux enhancement: Application to crossflow filtration of yeast suspensions, J. Desalination 147(1-3) (2002) 31-38.

DOI: 10.1016/S0011-9164(02)00567-2

Google Scholar

[2] N.A. Agaeva, Hydrodynamics of Motion of a Liquid in the Conjugate System "Formation-Well-Pipeline", J. Journal of Engineering Physics and Thermophysics 94(3) (2021) 623-632.

DOI: 10.1007/s10891-021-02273-1

Google Scholar

[3] O. Pashchenko, B. Ratov, V. Khomenko, A. Gusmanova, E. Omirzakova, Methodology for optimizing drill bit performance, J. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 24(1.1) (2024) 651-658.

DOI: 10.5593/sgem2024/1.1/s06.78

Google Scholar

[4] J. Aravind Kumar, S. Sankaran, A. Veerasimman, U. Marimuthu, G. Palani, Chemical-treated sisal fiber reinforcement in red mud composites: Advancing mechanical strength and environmental sustainability, J. Polymer Composites 45(2) (2024) 1123-1135.

DOI: 10.1002/pc.27955

Google Scholar

[5] S. Muratova, B. Ratov, V. Khomenko, O. Pashchenko, O. Kamyshatskyi, Improvement of the methodology for measuring plastic viscosity and dynamic shear stress of drilling fluids, J. IOP Conference Series: Earth and Environmental Science 1491 (2025) 012026.

DOI: 10.1088/1755-1315/1491/1/012026

Google Scholar

[6] V.L. Khomenko, B.T. Ratov, O.A. Pashchenko, O.M. Davydenko, B.R. Borash, Justification of drilling parameters of a typical well in the conditions of the Samskoye field, J. IOP Conference Series: Earth and Environmental Science 1254(1) (2023) 012052.

DOI: 10.1088/1755-1315/1254/1/012052

Google Scholar

[7] V. Bondarenko, I. Kovalevska, V. Krasnyk, V. Chernyak, O. Haidai, R. Sachko, I. Vivcharenko, Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations, J. Min. Miner. Depos. 18(1) (2024) 67-81.

DOI: 10.33271/mining18.01.067

Google Scholar

[8] Ye.A. Koroviaka, M.R. Mekshun, A.O. Ihnatov, B.T. Ratov, Ya.S. Tkachenko, Determining technological properties of drilling muds, J. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2 (2023) 025.

DOI: 10.33271/NVNGU/2023-2/025

Google Scholar

[9] K.B. Nakshatrala, S.H.S. Joodat, R. Ballarini, Modeling flow in porous media with double porosity/permeability: Mathematical model, properties, and analytical solutions, J. Journal of Applied Mechanics, Transactions ASME 85(6) (2018) 061010.

DOI: 10.1115/1.4040116

Google Scholar

[10] O.A. Pashchenko, N.A. Borodina, O.O. Yavorska, V.V. Ishkov, O.V. Cherniaiev, Application of polymer flooding to increase oil recovery, J. IOP Conference Series: Earth and Environmental Science 1415(1) (2024) 012054.

DOI: 10.1088/1755-1315/1415/1/012054

Google Scholar

[11] I. Chudyk, D. Sudakova, A. Dreus, A. Pavlychenko, A. Sudakov, Determination of the thermal state of a block gravel filter during its transportation along the borehole, J. Mining of Mineral Deposits 17(4) (2023) 75-82.

DOI: 10.33271/mining17.04.075

Google Scholar

[12] G. Keir, V. Jegatheesan, A review of computational fluid dynamics applications in pressure-driven membrane filtration, J. Reviews in Environmental Science and Biotechnology 13(2) (2014) 183-201.

DOI: 10.1007/s11157-013-9327-x

Google Scholar

[13] R. Bayamirova, A. Sudakov, A. Togasheva, M. Sarbopeyeva, Application of flow-diversion technologies to increase oil recovery at the Uzen field, J. E3S Web of Conferences 567 (2024) 01003.

DOI: 10.1051/e3sconf/202456701003

Google Scholar

[14] A. Embaby, A. Ismael, F.A. Ali, H.A. Farag, B.G. Mousa, S. Gomaa, M. Elwageeh, An approach based on Machine Learning Algorithms, Geostatistical Technique, and GIS analysis to estimate phosphate ore grade at the Abu Tartur Mine, Western Desert, Egypt, J. Min. Miner. Depos. 17(1) (2023) 108-119.

DOI: 10.33271/mining17.01.108

Google Scholar

[15] B. Ratov, A. Pavlychenko, R. Kirin, O. Pashchenko, V. Khomenko, N. Tileuberdi, O. Kamyshatskyi, S. Serebriak, A. Seidaliyev, S. Muratova, Using Machine Learning to Model Mechanical Processes in Mining: Theory, Practice, and Legal Considerations, J. Engineered Science 33 (2025) 1419.

DOI: 10.30919/es1419

Google Scholar

[16] D. Bilbao, H. Aimar, D.M. Mateos, Filtration evolution of hypergraphs: A novel approach to studying multidimensional datasets, J. Chaos 34(3) (2024) 033101.

DOI: 10.1063/5.0155459

Google Scholar

[17] M. Henandez, P. Nguyen, Global well-posedness for the stochastic non-Newtonian fluid equations and convergence to the Navier-Stokes equations, J. Mathematical Methods in the Applied Sciences 44(8) (2021) 6827-6842.

DOI: 10.1002/mma.6827

Google Scholar

[18] C. Burtea, M. Szlenk, Weak solutions to the Navier-Stokes equations for steady compressible non-Newtonian fluids, J. Nonlinear Analysis, Theory, Methods and Applications 221 (2025) 113774.

DOI: 10.1016/j.na.2025.113774

Google Scholar

[19] I. Chudyk, I. Sudakova, A. Dreus, A. Pavlychenko, A. Sudakov, Determination of the thermal state of a block gravel filter during its transportation along the borehole, J. Min. Miner. Depos. 17(4) (2023) 75-82.

DOI: 10.33271/mining17.04.075

Google Scholar

[20] A.V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media, J. Transport in Porous Media 10(2) (1993) 169-188.

DOI: 10.1007/BF00614813

Google Scholar

[21] F. Permatasari, T.A. Sardjono, M.H. Fatoni, Dialysate fluid flow control system in balancing chamber in ultrafiltration process in hemodialysis, J. 2022 2nd International Conference on Intelligent Cybernetics Technology and Applications, ICICyTA 2022 (2022) 10038150.

DOI: 10.1109/ICICyTA57421.2022.10038150

Google Scholar

[22] O.A. Pashchenko, V.L. Khomenko, B.T. Ratov, Ye.A. Koroviaka, V.O. Rastsvietaiev, Comprehensive approach to calculating operational parameters in hydraulic fracturing, J. IOP Conference Series: Earth and Environmental Science 1415(1) (2024) 012080.

DOI: 10.1088/1755-1315/1415/1/012080

Google Scholar

[23] B.T. Ratov, V.L. Khomenko, M.T. Biletskiy, S.T. Zakenov, Z.S. Makhitova, Modernization of water well drilling technology with drilling fluid reverse circulation, J. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 1 (2025) 453.

DOI: 10.32014/2025.2518-170X.453

Google Scholar

[24] H. Symanovych, I. Lisovytska, M. Odnovol, R. Ahaiev, S. Poimanov, Rationale and modeling of technology for complex bottom-hole zone de-stressing of gas-dynamically active rock mass, J. Min. Miner. Depos. 18(2) (2024) 83-92.

DOI: 10.33271/mining18.02.083

Google Scholar

[25] V. Khomenko, O. Pashchenko, B. Ratov, Y. Koroviaka, R. Kirin, Determination of the arrangement of electrodes for electrochemical fastening of borehole walls, J. IOP Conference Series: Earth and Environmental Science 1481(1) (2025) 012006.

DOI: 10.1088/1755-1315/1481/1/012006

Google Scholar

[26] M. Safari, R. Gholami, M. Jami, M.A. Ananthan, A. Rahimi, Developing a porosity-permeability relationship for ellipsoidal grains: A correction shape factor for Kozeny-Carman's equation, J. Journal of Petroleum Science and Engineering 203 (2021) 108896.

DOI: 10.1016/j.petrol.2021.108896

Google Scholar

[27] A.O. Kozhevnykov, A.Yu. Dreus, B. Liu, A.K. Sudakov, Drilling fluid circulation rate influence on the contact temperature during borehole drilling, J. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1 (2018) 49-54.

DOI: 10.29202/nvngu/2018-1/14

Google Scholar

[28] B. Ratov, A. Borash, M. Biletskiy, V. Khomenko, Y. Koroviaka, Identifying the operating features of a device for creating implosion impact on the water bearing formation, J. Eastern-European Journal of Enterprise Technologies 2(13) (2023) 36-44.

DOI: 10.15587/1729-4061.2023.287447

Google Scholar

[29] L.Q. Nguyen, T.T.T. Le, T.G. Nguyen, D.T. Tran, Prediction of underground mining-induced subsidence: Artificial neural network based approach, J. Min. Miner. Depos. 17(4) (2023) 45-52.

DOI: 10.33271/mining17.04.045

Google Scholar

[30] I. Chudyk, D. Sudakova, A. Pavlychenko, A. Sudakov, Bench studies of the process of transporting an inverse gravel filter of block type along the well, J. IOP Conference Series: Earth and Environmental Science 1348(1) (2024) 012009.

DOI: 10.1088/1755-1315/1348/1/012009

Google Scholar