Soil Evolution in Overburden Dumps and Adjacent Areas

Article Preview

Abstract:

A comprehensive analysis of the results of theoretical generalisations, field surveys and laboratory experiments was carried out to assess the environmental risks from overburden dumps. Changes in the qualitative parameters of the edaphotope of adjacent territories, in particular agricultural land, were established through the study of granulometric composition, organic carbon content, mineral forms of nitrogen, acidity of water extract, etc. The samples show that the soils at the foot of the dump are characterised as low-humus, the soils in the adjacent field are also low-humus, while the soils on the side of the field far from the man-made object are medium-humus. This indicates degradation processes in chernozems caused by wind accumulation of erosion products from the surface of the dumps. Further accumulation of dust deposits in combination with anthropogenic load from motor vehicles can cause alkalisation of agricultural soils and reduce the bioavailability of trace elements for cultivated plants. The analysis of the dynamics of chemical indicators for 2022 and 2024 showed the need to integrate dust load parameters into environmental impact assessment procedures, taking into account its long-term effects. It is recommended to design protective forest belts or other measures to reduce the man-made dust pressure from overburden dumps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-186

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ł. Uzarowicz, W. Kwasowski, J. Lasota, E. Błońska, B. Górka-Kostrubiec, M. Tarnawczyk, D. Murach, M. Gilewska, W. Gryczan, E. Pawłowicz, P. Jankowski, Vegetation cover as an important factor affecting the properties and evolution of Spolic Technosols: A case study from a dump of the abandoned iron ore mine in central Poland, CATENA. 254 (2025) 108906.

DOI: 10.1016/j.catena.2025.108906

Google Scholar

[2] M. Swęd, Ł. Uzarowicz, A. Duczmal-Czernikiewicz, W. Kwasowski, A. Pędziwiatr, M. Siepak, P. Niedzielski, Forms of metal(loid)s in soils derived from historical calamine mining waste and tailings of the Olkusz Zn–Pb ore district, southern Poland: A combined pedological, geochemical and mineralogical approach, Appl. Geochem. 139 (2022) 105218.

DOI: 10.1016/j.apgeochem.2022.105218

Google Scholar

[3] M. Tarnawczyk, Ł. Uzarowicz, K. Perkowska-Pióro, A. Pędziwiatr, W. Kwasowski, Effect of land reclamation on soil properties, mineralogy and trace-element distribution and availability: the example of Technosols developed on the tailing disposal site of an abandoned Zn and Pb mine, Minerals. 11 (2021) 559.

DOI: 10.3390/min11060559

Google Scholar

[4] R. Imbaná, F.D. de Almeida Valente, R. Gomes Siqueira, C. Marques Moquedace, I. Rodrigues de Assis, Assessing the quality of constructed technosols enabled holistic monitoring of ecological restoration, J. Environ. Manage. 353 (2024) 120237.

DOI: 10.1016/j.jenvman.2024.120237

Google Scholar

[5] P. Maurya, R. E. Masto, J. Frouz, H. Agarwalla, Comparative assessment of the soil restoration process by four abundant tree species in a humid subtropical post-mining area, Restoration Ecology. 33 (5) (2025), e70080.

DOI: 10.1111/rec.70080

Google Scholar

[6] J. Frouz, J.C. Oppong, M. Bartuška, M. Šanda, K. Lišková, W. Gerwin, R. Nenov, J. Červenka, J. Houška, J.-F. Kubát, T. Vitvar, J. Dušek, The effects of surface heterogeneity on erosion and sedimentation and their implications for of soil properties at postmining sites, Science of The Total Environment. 957 (2024) 177612.

DOI: 10.1016/j.scitotenv.2024.177612

Google Scholar

[7] B. Čížková, B. Woś, M. Pietrzykowski, J. Frouz, Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining, Ecological Engineering. 123 (2018) 103-111.

DOI: 10.1016/j.ecoleng.2018.09.004

Google Scholar

[8] M. Paniagua-López, M. Vela-Cano, D. Correa-Galeote, F.J. Martín-Peinado, F.J. Martínez-Garzón, C. Pozo, J. González-López, M. Sierra-Aragón, Soil remediation approach and bacterial community structure in a long-term contaminated soil by a mining spill (Aznalcóllar, Spain), Sci. Total Environ. 777 (2021) 145128. https://doi.org/10.1016/j.scitotenv. 2021.145128.

DOI: 10.1016/j.scitotenv.2021.145128

Google Scholar

[9] A. Józefowska, B. Woś, E. Sierka, A. Kompała-Bąba, W. Bierza, A. Klamerus-Iwan, M. Chodak, M. Pietrzykowski, How applied reclamation treatments and vegetation type affect on soil fauna in a novel ecosystem developed on a spoil heap of carboniferous rocks, Eur. J. Soil Biol. 119 (2023) 103571.

DOI: 10.1016/j.ejsobi.2023.103571

Google Scholar

[10] K. Ciarkowska, L. Gargiulo, G. Mele, Natural restoration of soils on mine heaps with similar technogenic parent material: A case study of long-term soil evolution in Silesian-Krakow Upland Poland, Geoderma. 261 (2016), 141-150. https://doi.org/10.1016/j.geoderma. 2015.07.018.

DOI: 10.1016/j.geoderma.2015.07.018

Google Scholar

[11] Y.H. Zhang, X.L. Xu, Z.W. Li, M.X. Liu, C.H. Xu, R.F. Zhang, W. Luo, Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China, Sci. Total Environ. 650 (2) (2019) 2657-2665.

DOI: 10.1016/j.scitotenv.2018.09.372

Google Scholar

[12] M. Pietrzykowski, B. Woś, J. Likus, M. Pająk, E. Sierka, B. Stalmachova, Restoration Ecosystem Toward Spontaneous Succession on Reclaimed Mining Sites, in: Vimal Chandra Pandey (Ed.), Biodiversity and Ecosystem Services on Post‐Industrial Land, John Wiley & Sons Ltd,. 2025, p.97–118.

DOI: 10.1002/9781394187416.ch4

Google Scholar

[13] H. Huot, M.O. Simonnot, J.L. Morel, Pedogenetic trends in soils formed in technogenic parent materials, Soil Sci. 180 (4–5) (2015) 182-192.

DOI: 10.1097/SS.0000000000000135

Google Scholar

[14] Ł. Uzarowicz, P. Charzyński, A. Greinert, P. Hulisz, C. Kabała, G. Kusza, W. Kwasowski, A. Pędziwiatr, Studies of technogenic soils in Poland: past, present, and future perspectives, Soil Sci. Annu. 71 (4) (2020) 281-299.

DOI: 10.37501/soilsa/131615

Google Scholar

[15] O. Mudrák, J. Doležal, J. Frouz, Initial species composition predicts the progress in the spontaneous succession on post-mining sites, Ecological Engineering. 95 (2016) 665-670.

DOI: 10.1016/j.ecoleng.2016.07.002

Google Scholar

[16] J. Frouz, O. Mudrák, E. Reitschmiedová, A. Walmsley, P. Vachová, H. Šimáčková, J. Albrechtová, J. Moradi, J. Kučera, Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development, Journal of Environmental Management. 205 (2018) 50-58.

DOI: 10.1016/j.jenvman.2017.09.065

Google Scholar

[17] Ł. Strzeleczek, M. Jędrzejczyk-Korycińska, I. Piecuch, A. Rostański, The remnants of mid-forest iron ore excavations as a refuge for local diversity in the vascular plant flora, Appl. Ecol. Environ. Res. 15 (4) (2017) 1541-1563.

DOI: 10.15666/aeer/1504_15411563

Google Scholar

[18] L. Kucher, S. Poltoretskyi, O. Vasylenko, I. Krasnoshtan, O. Zamorskyi, O. Manzii, V. Boroday, O. Voitsekhivska, V. Voitsekhivskyi, E. Beregniak, Peculiarities of the primary process of the soil formation on the mine rock dumps under the influence of biotic factors, Journal of Ecological Engineering. 23 (11) (2022) 101-108.

DOI: 10.12911/22998993/153399

Google Scholar

[19] Ł. Uzarowicz, M. Skiba, M. Leue, Z. Zagórski, A. Gąsiński, J. Trzciński, Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II, Mineral Transformations and Soil Evolution, Catena. 162C (2018) 255-269.

DOI: 10.1016/j.catena.2017.11.005

Google Scholar

[20] P. Maurya, R.E. Masto, J. Frouz, H. Agarwalla, S. Bari, Mine soil properties as influenced by tree species and topography of the re-vegetated coal mine overburden dump, Catena. 233 (2023) 107500.

DOI: 10.1016/j.catena.2023.107500

Google Scholar

[21] E. Garbarino, G. Orveillon, H. Saveyn, P. Barthe, P. Eder, Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industriesin accordance with Directive 2006/21/EC, EUR 28963 EN, Publications Office of the European Union, Luxembourg, 2018.

DOI: 10.1016/j.resourpol.2020.101782

Google Scholar

[22] National report on the state of the natural environment in Ukraine in 2021. Kyiv: Ministry of Environmental Protection and Natural Resources of Ukraine, 2022, p.514. https://mepr.gov.ua/wp-content/uploads/2023/01/Natsdopovid-2021-n.pdf.

Google Scholar

[23] Healthy soils of Ukraine: 2019. Integrated management of natural resources of degraded landscapes of forest-steppe and steppe zones of Ukraine – Overview of project activities. Kyiv: FAO, p.6. https://www.fao.org/publications/card/ru/c/CA7464UK/.

DOI: 10.4060/cd1416en

Google Scholar

[24] Development of the Rybalsky migmatite deposit, Additions to objects No 1102,7/4-00, Working project EIA LLC "NKC "UKRGEOCONSULTING", Kryvyi Rih, 2016.

Google Scholar

[25] N.M. Maksymova, D.S. Pikarenia, V.V. Katsevych, О.V. Orlinska, I.V. Chushkina, T.K. Makarova, H.V. Hapich, The influence of the dumping of overburden rocks of the granite quarry on the quality of the soils of the adjacent territories, Collection of scientific works of the National Mining University. 65–17 (2021) 179–194.

DOI: 10.33271/crpnmu/65.179

Google Scholar

[26] DSTU 4730:2007. Soil quality. Determination of the granulometric composition by the pipette method in the modification of N.A. Kaczynski. Kyiv, Derzhspozhivstandard of Ukraine. (2008) 14.

Google Scholar

[27] DSTU 4729:2007. Soil quality. Determination of nitrate and ammonium nitrogen in the modification of the NSC IHA named after O.N. Sokolovsky. Kyiv, Derzhspozhivstandard of Ukraine. (2008) 10.

Google Scholar

[28] DSTU 4362:2004. Soil quality. Indicators of soil fertility. Kyiv, Derzhspozhivstandard of Ukraine. (2005) 30.

Google Scholar

[29] DSTU 4289:2004. Soil quality. Methods for determining organic matter. Kyiv, Derzhspozhyvstandart of Ukraine. (2005) 14.

Google Scholar

[30] M.M. Kovalov, F.P. Topolnyi, V.O. Malakhovska, Soil organic matter under the influence of long-term agricultural use, Agrarian innovations. 17 (2023) 81–87.

DOI: 10.32848/agrar.innov.2023.17.10

Google Scholar

[31] M. Wang, S. Wu, D. Si, H. Wu, D. Zhou, Effective transformation of ammonia nitrogen in the soil from rare earth mining areas by amendments of biomass ash, Science of The Total Environment. 1000 (2025) 180433.

DOI: 10.1016/j.scitotenv.2025.180433

Google Scholar

[32] Information on https://superagronom.com/blog/903-modeli-rodyuchosti-gruntu-optimalne-poyednannya-poglinutih-obminnih-kationiv-u-skladi-gvk.

Google Scholar