Results of Research into the Physical and Mechanical Properties of Biopolymer Gravel Composite Block Filters for Hydrogeological Wells

Article Preview

Abstract:

The article presents the results of a study of the physical and mechanical properties of a biopolymer gravel composite made on the basis of polylactide (PLA) and natural gravel. The developed composite is intended for filtration elements of hydrogeological wells. The biopolymer-gravel composite was tested for compressive strength. The results showed that the biopolymer gravel composite is characterized by sufficient mechanical strength and resistance to the effects of the aquatic environment, which confirms the feasibility of its use as an environmentally safe material for filtration elements of hydrogeological wells. The obtained data can be used for further optimization of the composition of the composite material and the development of new biopolymer block gravel filters of hydrogeological wells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-237

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Коzhevnikov А.А., Sudakov А.К., Dreus A.J., Lysenko, K. Ye. Study of heat transfer in cryogenic gravel filter during its transportation along a drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. v.6. (2014) p.49–54. EID: 2-s2.0-84917692657

DOI: 10.33271/nvngu/2020-5/033

Google Scholar

[2] Ratov, B.T., Fedorov, B.V., Syzdykov, A.Kh., Zakenov, S.T., Sudakov A.K. The main directions of modernization of rock-destroying tools for drilling solid mineral resources. 21st International Multidisciplinary Scientific GeoConference SGEM. Section Exploration & Mining, (2021) 503-514

DOI: 10.5593/sgem2021/1.1/s03.062

Google Scholar

[3] Sudakov, A., Dreus, A., Ratov, B., Sudakova, О., Khomenko, O., Dziuba, S., Sudakova, D., Muratova, S., & Ayazbay, M. Substantiation of thermomechanical technology parameters of absorbing levels isolation of the boreholes. News of the national academy of sciences of the Republic of Kazakhstan, 2(440) (2020) 63 – 71. https://doi.org/10.32014/2020.2518–170X.32

DOI: 10.32014/2020.2518-170x.32

Google Scholar

[4] Chudyk, I., Sudakova, D., Dreus, A., Pavlychenko, A., & Sudakov, A. Determination of the thermal state of a block gravel filter during its transportation along the borehole. Mining of Mineral Deposits, 17(4) (2023) 75-82

DOI: 10.33271/mining17.04.075

Google Scholar

[5] Biletskiy, M., Ratov, B., Sudakov, A., Sudakova, D., & Borash, B. Modeling of drilling water supply wellswith airlift reverse flush agent circulation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1 (2023) 53–60. https://doi.org/10.33271/nvngu/2023–1/053

DOI: 10.33271/nvngu/2023-1/053

Google Scholar

[6] Davydenko, A.N., Kamyshatsky, A.F., Sudakov, A.K. Innovative technology for preparing washing liquid in the course of drilling. Science and Innovation 11(5) (2015) с. 5-13

DOI: 10.15407/scine11.05.005

Google Scholar

[7] Ratov B.T., Chudyk I.І., Fedorov B.V., Sudakov A.K., Borash B.R. Results of production tests of an experimental diamond crown during exploratory drilling in Kazakhstan. SOCAR Proceedings. 2 (2023) 023-029

DOI: 10.5510/OGP20230200842

Google Scholar

[8] Kosenko, A., Khomenko, O., Kononenko, M., Polyanska, A., Buketov, V., Dychkovskyi, R., Polański, J., Howaniec, N., & Smolinski, A. Sustainable management of iron ore extraction processes using methods of borehole hydro technology. International Journal of Mining and Mineral Engineering, 16(1) (2025) 92–112

DOI: 10.1504/ijmme.2025.145592

Google Scholar

[9] Kosenko, A., Khomenko, O., Kononenko, M., & Myronova, I. Experimental studies of the method of hydraulic mining by boreholes of martite ores. IOP Conference Series: Earth and Environmental Science, 1481(1) (2025) 012007

DOI: 10.1088/1755-1315/1481/1/012007

Google Scholar

[10] Kosenko A., Khomenko, O., Kononenko, M., Myronova I., & Pazynich Yu. Raises advance using borehole hydraulic technology. E3S Web of Conferences, 567 (2025) 01008

DOI: 10.1051/e3sconf/202456701008

Google Scholar

[11] Gleick, P. H. Water as a weapon and casualty of conflict: Freshwater and international humanitarian law. Water Resources Management 33(5) (2019) 1737-1751

DOI: 10.1007/s11269-019-02212-z

Google Scholar

[12] Schillinger, J., Özerol, G., Güven-Griemert, Ş. & Heldeweg, M. Water in war: Understanding the impacts of armed conflict on water resources and their management. WIREs Water, 2020, 7(6)

DOI: 10.1002/wat2.1480

Google Scholar

[13] Gregorova, Adriana, Machovsky, Michal, Wimmer, Rupert, Viscoelastic Properties of Mineral-Filled Poly(lactic acid) Composites, International Journal of Polymer Science, 252981 (2012) 6 pages

DOI: 10.1155/2012/252981

Google Scholar

[14] Korovyaka, Ye., Astakhov, V., & Manukyan, E. Perspectives of mine methane extraction in conditions of Donets'k gas-coal basin. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 2014, 311–316. https://doi.org

DOI: 10.1201/b17547-54

Google Scholar

[15] Ihnatov, A.O., Koroviaka, Y.A., Haddad, J., Tershak, B.A., Kaliuzhna, T.M., & Yavorska, V.V. Experimental and Theoretical Studies on the Operating Parameters of Hydromechanical Drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1) (2022) 20-27

DOI: 10.33271/nvngu/2022-1/020

Google Scholar

[16] . Pashchenko, O., Khomenko, V., Ishkov, V., Koroviaka, Ye., Kirin, R. and Shypunov, S. Protection of drilling equipment against vibrations during drilling. IOP Conference Series: Earth and Environmental Science, 1348 (2024) 012004

DOI: 10.1088/1755-1315/1348/1/012004

Google Scholar

[17] Borash, B.R., Biletskiy, M.T., Khomenko, V.L., Koroviaka, Ye.A., Ratov, B.T. Optimization of Technological Parameters of Airlift Operation when Drilling Water Wells. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3) (2023) 25-31

DOI: 10.33271/nvngu/2023-3/025

Google Scholar

[18] Ihnatov, A.O., Koroviaka, Ye.A., Pavlychenko, A.V., Rastsvietaiev, V.O., Askerov, I.K. (2023). Determining key features of the operation of percussion downhole drilling machines. ICSF-2023. IOP Conf. Series: Earth and Environmental Science 1245 (2023) 012053

DOI: 10.1088/1755-1315/1254/1/012053

Google Scholar

[19] Biletskiy, M. T., Ratov, B. T., Khomenko, V. L., Borash, A. R., & Muratova, S. K. The choice of optimal methods for the development of water wells in the conditions of the Tonirekshin field (Kazakhstan). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1 (2024) 13–19

DOI: 10.33271/nvngu/2024-1/013

Google Scholar

[20] Borash, B. R., Biletskiy, M. T., Khomenko, V. L., Koroviaka, Ye. A., & Ratov, B. T. Optimization of technological parameters of airlift operation when drilling water wells. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3 (2023) 25–31

DOI: 10.33271/nvngu/2023-3/025

Google Scholar

[21] Pashchenko, O., Khomenko, V., Ratov, B., Borodina, N., & Fedyk, O. Use of gravel filters with bitumen binder in oil wells. Iop Conference Series Earth and Environmental Science, 1491(1) (2025)

DOI: 10.1088/1755-1315/1491/1/012012

Google Scholar

[22] Khomenko, V., Pashchenko, O., Ratov, B., Kirin, R., Svitlychnyi, S., & Moskalenko, A. Optimization of the technology of hoisting operations when drilling oil and gas wells. IOP Conference Series: Earth and Environmental Science, 1348(1) (2024)

DOI: 10.1088/1755-1315/1348/1/012008

Google Scholar

[23] Pashchenko, O., Khomenko, V., Ishkov, V., Koroviaka, Y., Kirin, R., & Shypunov, S. Protection of drilling equipment against vibrations during drilling. IOP Conference Series: Earth and Environmental Science, 1348(1) (2024)

DOI: 10.1088/1755-1315/1348/1/012004

Google Scholar

[24] C. Pascual-González, J. de la Vega, C. Thompson, J.P. Fernández-Blázquez, D. Herráez-Molinero, N. Biurrun, I. Lizarralde, J. Sánchez del Río, C. González, J. LLorca, Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration, Journal of the Mechanical Behavior of Biomedical Materials, Volume 132 (2022) 105290, ISSN 1751-6161

DOI: 10.1016/j.jmbbm.2022.105290

Google Scholar

[25] Liu X, Wang T, Chow LC, Yang M, Mitchell JW. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). Int J Polym Sci. (2014) 827028

DOI: 10.1155/2014/827028

Google Scholar

[26] Murariu, Marius & Ferreira, Amália & Degee, Philippe & Alexandre, Michael & Dubois, Philippe. Polylactide compositions. Part 1: Effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer. (2007) 48. 2613

DOI: 10.1016/j.polymer.2007.02.067

Google Scholar

[27] Aliotta, Laura & Cinelli, Patrizia & Coltelli, Maria & Lazzeri, Andrea. Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. European Polymer Journal, (2018) 113

DOI: 10.1016/j.eurpolymj.2018.12.042

Google Scholar

[28] Kozhevnikov, A.A., Sudakov, A.K. Anniversaries of innovative drilling technologies: Reference review. Science and Innovation 11(4) (2015) 55-65.

Google Scholar

[29] Leluk, K., Frąckowiak, S., Ludwiczak, J., Rydzkowski, T., & Thakur, V. K. The Impact of Filler Geometry on Polylactic Acid-Based Sustainable Polymer Composites. Molecules, 26(1) (2021) 149

DOI: 10.3390/molecules26010149

Google Scholar

[30] Gozdecki, C., Moraczewski, K., & Kociszewski, M. Thermal and Mechanical Properties of Biocomposites Based on Polylactide and Tall Wheatgrass. Materials, 16(21) (2023) 6923

DOI: 10.3390/ma16216923

Google Scholar

[31] Arnaud Regazzi, Stéphane Corn, Patrick Ienny, Jean-Charles Bénézet, Anne Bergeret, Reversible and irreversible changes in physical and mechanical properties of biocomposites during hydrothermal aging, Industrial Crops and Products, Volume 84 (2016) Pages 358-365, ISSN 0926-6690

DOI: 10.1016/j.indcrop.2016.01.052

Google Scholar

[32] Garskaite, E., Alinauskas, L., Drienovsky, M., et al. Polylactic acid–nanocrystalline carbonated hydroxyapatite (PLA–cHAP) composite: Preparation and surface topographical structuring with direct laser writing (DLW). RSC Advances, 6(71) (2016) 66673–66680

DOI: 10.1039/C6RA11679E

Google Scholar

[33] Liu, Xingxun & Wang, Tongxin & Chow, Laurence & Yang, Mingshu & Mitchell, James. (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). International Journal of Polymer Science, (2014) 1-8

DOI: 10.1155/2014/827028

Google Scholar

[34] Homavand, A., Cree, D. E., & Wilson, L. D. Polylactic Acid Composites Reinforced with Eggshell/CaCO3 Filler Particles: A Review. Waste, 2(2) (2024) 169-185

DOI: 10.3390/waste2020010

Google Scholar

[35] Mishra, Sandip & Dahiya, Sanjeev & Gangil, Brijesh & Ranakoti, Lalit & Agrawal, Nikita. Mechanical properties of fibre/ filler based poly(Lactic Acid) (Pla) composites : A brief review. Acta Innovations, (2024) 5-18.

DOI: 10.32933/ActaInnovations.41.1

Google Scholar

[36] Stratiotou Efstratiadis, V., Argyros, A., Efthymiopoulos, P., Maliaris, G., Nasikas, N. K., & Michailidis, N. Utilization of Silica Filler as Reinforcement Material of Polylactic Acid (PLA) in 3D Printing Applications: Thermal, Rheological, and Mechanical Performance. Polymers, 16(10) (2024) 1326

DOI: 10.3390/polym16101326

Google Scholar

[37] DLendvai, L., Singh, T., Fekete, G. et al. Utilization of Waste Marble Dust in Poly(Lactic Acid)-Based Biocomposites: Mechanical, Thermal and Wear Properties. J Polym Environ 29 (2022) 2952–2963

DOI: 10.1007/s10924-021-02091-9

Google Scholar

[38] Borkowski, G., Martyła, A., Dobrosielska, M., Marciniak, P., Gabriel, E., Głowacka, J., Jałbrzykowski, M., Pakuła, D., & Przekop, R. E. Carbonate Lake Sediments in the Plastics Processing-Preliminary Polylactide Composite Case Study: Mechanical and Structural Properties. Materials, 15(17) (2022) 6106

DOI: 10.3390/ma15176106

Google Scholar

[39] Dincer U, Karsli NG, Sahin T, Yilmaz T. Analysis of the effect of boric acid and compatibilizer addition to polylactic acid/basalt fiber composites. Polym Compos, 45(16) (2024) 15005-15019

DOI: 10.1002/pc.28817

Google Scholar

[40] STU B B.2.7-214. Construction materials. Concretes. Methods for determination of strength by control samples. (2009)

Google Scholar