[1]
Коzhevnikov А.А., Sudakov А.К., Dreus A.J., Lysenko, K. Ye. Study of heat transfer in cryogenic gravel filter during its transportation along a drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. v.6. (2014) p.49–54. EID: 2-s2.0-84917692657
DOI: 10.33271/nvngu/2020-5/033
Google Scholar
[2]
Ratov, B.T., Fedorov, B.V., Syzdykov, A.Kh., Zakenov, S.T., Sudakov A.K. The main directions of modernization of rock-destroying tools for drilling solid mineral resources. 21st International Multidisciplinary Scientific GeoConference SGEM. Section Exploration & Mining, (2021) 503-514
DOI: 10.5593/sgem2021/1.1/s03.062
Google Scholar
[3]
Sudakov, A., Dreus, A., Ratov, B., Sudakova, О., Khomenko, O., Dziuba, S., Sudakova, D., Muratova, S., & Ayazbay, M. Substantiation of thermomechanical technology parameters of absorbing levels isolation of the boreholes. News of the national academy of sciences of the Republic of Kazakhstan, 2(440) (2020) 63 – 71. https://doi.org/10.32014/2020.2518–170X.32
DOI: 10.32014/2020.2518-170x.32
Google Scholar
[4]
Chudyk, I., Sudakova, D., Dreus, A., Pavlychenko, A., & Sudakov, A. Determination of the thermal state of a block gravel filter during its transportation along the borehole. Mining of Mineral Deposits, 17(4) (2023) 75-82
DOI: 10.33271/mining17.04.075
Google Scholar
[5]
Biletskiy, M., Ratov, B., Sudakov, A., Sudakova, D., & Borash, B. Modeling of drilling water supply wellswith airlift reverse flush agent circulation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1 (2023) 53–60. https://doi.org/10.33271/nvngu/2023–1/053
DOI: 10.33271/nvngu/2023-1/053
Google Scholar
[6]
Davydenko, A.N., Kamyshatsky, A.F., Sudakov, A.K. Innovative technology for preparing washing liquid in the course of drilling. Science and Innovation 11(5) (2015) с. 5-13
DOI: 10.15407/scine11.05.005
Google Scholar
[7]
Ratov B.T., Chudyk I.І., Fedorov B.V., Sudakov A.K., Borash B.R. Results of production tests of an experimental diamond crown during exploratory drilling in Kazakhstan. SOCAR Proceedings. 2 (2023) 023-029
DOI: 10.5510/OGP20230200842
Google Scholar
[8]
Kosenko, A., Khomenko, O., Kononenko, M., Polyanska, A., Buketov, V., Dychkovskyi, R., Polański, J., Howaniec, N., & Smolinski, A. Sustainable management of iron ore extraction processes using methods of borehole hydro technology. International Journal of Mining and Mineral Engineering, 16(1) (2025) 92–112
DOI: 10.1504/ijmme.2025.145592
Google Scholar
[9]
Kosenko, A., Khomenko, O., Kononenko, M., & Myronova, I. Experimental studies of the method of hydraulic mining by boreholes of martite ores. IOP Conference Series: Earth and Environmental Science, 1481(1) (2025) 012007
DOI: 10.1088/1755-1315/1481/1/012007
Google Scholar
[10]
Kosenko A., Khomenko, O., Kononenko, M., Myronova I., & Pazynich Yu. Raises advance using borehole hydraulic technology. E3S Web of Conferences, 567 (2025) 01008
DOI: 10.1051/e3sconf/202456701008
Google Scholar
[11]
Gleick, P. H. Water as a weapon and casualty of conflict: Freshwater and international humanitarian law. Water Resources Management 33(5) (2019) 1737-1751
DOI: 10.1007/s11269-019-02212-z
Google Scholar
[12]
Schillinger, J., Özerol, G., Güven-Griemert, Ş. & Heldeweg, M. Water in war: Understanding the impacts of armed conflict on water resources and their management. WIREs Water, 2020, 7(6)
DOI: 10.1002/wat2.1480
Google Scholar
[13]
Gregorova, Adriana, Machovsky, Michal, Wimmer, Rupert, Viscoelastic Properties of Mineral-Filled Poly(lactic acid) Composites, International Journal of Polymer Science, 252981 (2012) 6 pages
DOI: 10.1155/2012/252981
Google Scholar
[14]
Korovyaka, Ye., Astakhov, V., & Manukyan, E. Perspectives of mine methane extraction in conditions of Donets'k gas-coal basin. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 2014, 311–316. https://doi.org
DOI: 10.1201/b17547-54
Google Scholar
[15]
Ihnatov, A.O., Koroviaka, Y.A., Haddad, J., Tershak, B.A., Kaliuzhna, T.M., & Yavorska, V.V. Experimental and Theoretical Studies on the Operating Parameters of Hydromechanical Drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1) (2022) 20-27
DOI: 10.33271/nvngu/2022-1/020
Google Scholar
[16]
. Pashchenko, O., Khomenko, V., Ishkov, V., Koroviaka, Ye., Kirin, R. and Shypunov, S. Protection of drilling equipment against vibrations during drilling. IOP Conference Series: Earth and Environmental Science, 1348 (2024) 012004
DOI: 10.1088/1755-1315/1348/1/012004
Google Scholar
[17]
Borash, B.R., Biletskiy, M.T., Khomenko, V.L., Koroviaka, Ye.A., Ratov, B.T. Optimization of Technological Parameters of Airlift Operation when Drilling Water Wells. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3) (2023) 25-31
DOI: 10.33271/nvngu/2023-3/025
Google Scholar
[18]
Ihnatov, A.O., Koroviaka, Ye.A., Pavlychenko, A.V., Rastsvietaiev, V.O., Askerov, I.K. (2023). Determining key features of the operation of percussion downhole drilling machines. ICSF-2023. IOP Conf. Series: Earth and Environmental Science 1245 (2023) 012053
DOI: 10.1088/1755-1315/1254/1/012053
Google Scholar
[19]
Biletskiy, M. T., Ratov, B. T., Khomenko, V. L., Borash, A. R., & Muratova, S. K. The choice of optimal methods for the development of water wells in the conditions of the Tonirekshin field (Kazakhstan). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1 (2024) 13–19
DOI: 10.33271/nvngu/2024-1/013
Google Scholar
[20]
Borash, B. R., Biletskiy, M. T., Khomenko, V. L., Koroviaka, Ye. A., & Ratov, B. T. Optimization of technological parameters of airlift operation when drilling water wells. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3 (2023) 25–31
DOI: 10.33271/nvngu/2023-3/025
Google Scholar
[21]
Pashchenko, O., Khomenko, V., Ratov, B., Borodina, N., & Fedyk, O. Use of gravel filters with bitumen binder in oil wells. Iop Conference Series Earth and Environmental Science, 1491(1) (2025)
DOI: 10.1088/1755-1315/1491/1/012012
Google Scholar
[22]
Khomenko, V., Pashchenko, O., Ratov, B., Kirin, R., Svitlychnyi, S., & Moskalenko, A. Optimization of the technology of hoisting operations when drilling oil and gas wells. IOP Conference Series: Earth and Environmental Science, 1348(1) (2024)
DOI: 10.1088/1755-1315/1348/1/012008
Google Scholar
[23]
Pashchenko, O., Khomenko, V., Ishkov, V., Koroviaka, Y., Kirin, R., & Shypunov, S. Protection of drilling equipment against vibrations during drilling. IOP Conference Series: Earth and Environmental Science, 1348(1) (2024)
DOI: 10.1088/1755-1315/1348/1/012004
Google Scholar
[24]
C. Pascual-González, J. de la Vega, C. Thompson, J.P. Fernández-Blázquez, D. Herráez-Molinero, N. Biurrun, I. Lizarralde, J. Sánchez del Río, C. González, J. LLorca, Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration, Journal of the Mechanical Behavior of Biomedical Materials, Volume 132 (2022) 105290, ISSN 1751-6161
DOI: 10.1016/j.jmbbm.2022.105290
Google Scholar
[25]
Liu X, Wang T, Chow LC, Yang M, Mitchell JW. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). Int J Polym Sci. (2014) 827028
DOI: 10.1155/2014/827028
Google Scholar
[26]
Murariu, Marius & Ferreira, Amália & Degee, Philippe & Alexandre, Michael & Dubois, Philippe. Polylactide compositions. Part 1: Effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer. (2007) 48. 2613
DOI: 10.1016/j.polymer.2007.02.067
Google Scholar
[27]
Aliotta, Laura & Cinelli, Patrizia & Coltelli, Maria & Lazzeri, Andrea. Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. European Polymer Journal, (2018) 113
DOI: 10.1016/j.eurpolymj.2018.12.042
Google Scholar
[28]
Kozhevnikov, A.A., Sudakov, A.K. Anniversaries of innovative drilling technologies: Reference review. Science and Innovation 11(4) (2015) 55-65.
Google Scholar
[29]
Leluk, K., Frąckowiak, S., Ludwiczak, J., Rydzkowski, T., & Thakur, V. K. The Impact of Filler Geometry on Polylactic Acid-Based Sustainable Polymer Composites. Molecules, 26(1) (2021) 149
DOI: 10.3390/molecules26010149
Google Scholar
[30]
Gozdecki, C., Moraczewski, K., & Kociszewski, M. Thermal and Mechanical Properties of Biocomposites Based on Polylactide and Tall Wheatgrass. Materials, 16(21) (2023) 6923
DOI: 10.3390/ma16216923
Google Scholar
[31]
Arnaud Regazzi, Stéphane Corn, Patrick Ienny, Jean-Charles Bénézet, Anne Bergeret, Reversible and irreversible changes in physical and mechanical properties of biocomposites during hydrothermal aging, Industrial Crops and Products, Volume 84 (2016) Pages 358-365, ISSN 0926-6690
DOI: 10.1016/j.indcrop.2016.01.052
Google Scholar
[32]
Garskaite, E., Alinauskas, L., Drienovsky, M., et al. Polylactic acid–nanocrystalline carbonated hydroxyapatite (PLA–cHAP) composite: Preparation and surface topographical structuring with direct laser writing (DLW). RSC Advances, 6(71) (2016) 66673–66680
DOI: 10.1039/C6RA11679E
Google Scholar
[33]
Liu, Xingxun & Wang, Tongxin & Chow, Laurence & Yang, Mingshu & Mitchell, James. (2014). Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid). International Journal of Polymer Science, (2014) 1-8
DOI: 10.1155/2014/827028
Google Scholar
[34]
Homavand, A., Cree, D. E., & Wilson, L. D. Polylactic Acid Composites Reinforced with Eggshell/CaCO3 Filler Particles: A Review. Waste, 2(2) (2024) 169-185
DOI: 10.3390/waste2020010
Google Scholar
[35]
Mishra, Sandip & Dahiya, Sanjeev & Gangil, Brijesh & Ranakoti, Lalit & Agrawal, Nikita. Mechanical properties of fibre/ filler based poly(Lactic Acid) (Pla) composites : A brief review. Acta Innovations, (2024) 5-18.
DOI: 10.32933/ActaInnovations.41.1
Google Scholar
[36]
Stratiotou Efstratiadis, V., Argyros, A., Efthymiopoulos, P., Maliaris, G., Nasikas, N. K., & Michailidis, N. Utilization of Silica Filler as Reinforcement Material of Polylactic Acid (PLA) in 3D Printing Applications: Thermal, Rheological, and Mechanical Performance. Polymers, 16(10) (2024) 1326
DOI: 10.3390/polym16101326
Google Scholar
[37]
DLendvai, L., Singh, T., Fekete, G. et al. Utilization of Waste Marble Dust in Poly(Lactic Acid)-Based Biocomposites: Mechanical, Thermal and Wear Properties. J Polym Environ 29 (2022) 2952–2963
DOI: 10.1007/s10924-021-02091-9
Google Scholar
[38]
Borkowski, G., Martyła, A., Dobrosielska, M., Marciniak, P., Gabriel, E., Głowacka, J., Jałbrzykowski, M., Pakuła, D., & Przekop, R. E. Carbonate Lake Sediments in the Plastics Processing-Preliminary Polylactide Composite Case Study: Mechanical and Structural Properties. Materials, 15(17) (2022) 6106
DOI: 10.3390/ma15176106
Google Scholar
[39]
Dincer U, Karsli NG, Sahin T, Yilmaz T. Analysis of the effect of boric acid and compatibilizer addition to polylactic acid/basalt fiber composites. Polym Compos, 45(16) (2024) 15005-15019
DOI: 10.1002/pc.28817
Google Scholar
[40]
STU B B.2.7-214. Construction materials. Concretes. Methods for determination of strength by control samples. (2009)
Google Scholar