[1]
Adlucky, V. J., Levchenko, M. S., Loboda, V. V. (2024). Finite-element analysis of the parameters of fracture in a piezoelectric bimaterial with interface crack for various types of boundary conditions on its faces. J. Math. Sci., 279, 181–196.
DOI: 10.1007/s10958-024-07004-4
Google Scholar
[2]
Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y. (2016). Interface cracks in piezoelectric materials. Smart Mater. Struct., 25(2), 023001.
DOI: 10.1088/0964-1726/25/2/023001
Google Scholar
[3]
Lapusta, Y., Onopriienko, O., Loboda, V. (2017). An interface crack with partially electrically conductive crack faces under antiplane mechanical and in-plane electric loadings. Mech. Res. Commun., 81, 38–43.
DOI: 10.1016/j.mechrescom.2017.02.004
Google Scholar
[4]
Lei, J., Zhang, C., Bui, T. Q. (2015). Transient dynamic interface crack analysis in magnetoelectroelastic bimaterials by a time-domain BEM. Eur. J. Mech. A/Solids, 49, 146–157.
DOI: 10.1016/j.euromechsol.2014.07.010
Google Scholar
[5]
Ma, P., Su, R. K. L., Feng, W. J. (2018). Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials. Int. J. Eng. Sci., 129, 21–33.
DOI: 10.1016/j.ijengsci.2018.04.005
Google Scholar
[6]
Rogowski, B. (2017). Exact solution for an anti-plane interface crack in piezoelectro-magneto-elastic bimaterials. Arch. Appl. Mech., 87(6), 593–606.
DOI: 10.1007/s00419-016-1158-0
Google Scholar
[7]
Shevelova, N., Khodanen, T., Chapelle, F., Lapusta, Y., Loboda, V. (2023). A set of collinear electrically charged interfacial cracks in magnetoelectroelastic bimaterial. Acta Mech., 234(8), 4899–4915.
DOI: 10.1007/s00707-023-03642-y
Google Scholar
[8]
Sulym, H. T., Piskozub, L. G., Piskozub, Y. Z., Pasternak, Y. M. (2015). Antiplane deformation of a bimaterial containing an interfacial crack with account of friction. I. Single loading. Acta Mech. Autom., 9(2), 115–121.
DOI: 10.1515/ama-2015-0020
Google Scholar
[9]
Sulym, H. T., Piskozub, L. G., Piskozub, Y. Z., Pasternak, Y. M. (2015). Antiplane deformation of a bimaterial containing an interfacial crack with account of friction. II. Repeating and cyclic loading. Acta Mech. Autom., 9(3), 178–184.
DOI: 10.1515/ama-2015-0030
Google Scholar
[10]
Tan, Y., Peng, F., Liu, C., Peng, D., Li, X. (2024). Fourth-order phase-field modeling for brittle fracture in piezoelectric materials. Appl. Math. Mech. (Engl. Ed.), 45, 837–856.
DOI: 10.1007/s10483-024-3118-9
Google Scholar
[11]
Tian, W., Zhong, Z., Li, Y. (2016). Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading. Smart Mater. Struct., 25(1), 015029.
DOI: 10.1088/0964-1726/25/1/015029
Google Scholar
[12]
Tian, X., Zhang, Y., Ma, H., Ding, X. (2024). Analysis of an interface crack between piezoelectric semiconductor coating and elastic substrate structure. Mathematics, 12(8), 1208.
DOI: 10.3390/math12081208
Google Scholar
[13]
Yan, Z., Feng, W. J., Zhang, C., Liu, J. X. (2019). The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric-piezomagnetic bi-layered structures. Comput. Mech., 64(5), 1303–1319.
DOI: 10.1007/s00466-019-01709-z
Google Scholar
[14]
Yan, Z., Feng, W. J., Zhang, C. (2021). Interfacial crack growth in piezoelectric-piezomagnetic bi-layered structures with a modified mechanical energy release rate criterion. Compos. Struct., 275, 113344.
DOI: 10.1016/j.compstruct.2020.113344
Google Scholar
[15]
Yu, H., Zhu, S., Ma, H., Wang, J. (2024). Interface crack analysis of piezoelectric laminates considering initial strain. Int. J. Mech. Sci., 271, 109104.
DOI: 10.1016/j.ijmecsci.2024.109104
Google Scholar
[16]
Yu, T., Bui, T. Q., Liu, P., et al. (2015). Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. Int. J. Solids Struct., 67–68, 205–218.
DOI: 10.1016/j.ijsolstr.2015.03.037
Google Scholar
[17]
Zhao, X., Liu, J. X., Qian, Z. H., Gao, C. F. (2019). Transient fracture of a piezoelectric-piezomagnetic sandwich structure: anti-plane case. Acta Mech., 230(5), 1233–1246.
DOI: 10.1007/s00707-017-2030-1
Google Scholar
[18]
Zhao, X., Qian, Z., Liu, J., Gao, C. (2020). Effects of electric/magnetic impact on the transient fracture of interface crack in piezoelectric-piezomagnetic sandwich structure: anti-plane case. Appl. Math. Mech. (Engl. Ed.), 41(1), 139–156.
DOI: 10.1007/s10483-020-2552-5
Google Scholar
[19]
Zhu, S., Yu, H., Wang, Z. (2025). Interfacial dynamic impermeable crack analysis in dissimilar piezoelectric materials by a new interaction integral. Compos. Struct., 257, 118668.
DOI: 10.1016/j.compstruct.2024.118668
Google Scholar
[20]
Viun, O., Loboda, V., Lapusta, Y. (2015). Periodic limited permeable cracks in magneto-electro-elastic media. Acta Mech., 226(12), 2225–2233.
DOI: 10.1007/s00707-014-1296-9
Google Scholar