Mixed Electromagnetic Crack-Face Conditions in a Piezoelectric/Piezomagnetic Bimaterial under Antiplane Mechanical Loading and In-Plane Electric Fields

Article Preview

Abstract:

An interface crack between two semi-infinite piezoelectric/piezomagnetic media under out-of-plane mechanical load and in-plane electric and magnetic fields parallel to the crack faces is examined. A portion of the faces is electrically conducting and kept at a uniform magnetic potential, while the remaining portion is electrically and magnetically permeable. The coupled fields are represented by functions analytic in the plane outside the crack. With these representations, the mixed crack-face conditions lead to a combined Dirichlet–Riemann and Hilbert boundary-value problem, which is solved in closed form for arbitrary conductive versus permeable segment lengths. The solution yields explicit expressions for stresses, electric and magnetic fields, and the crack-face sliding (displacement jump). The singular behavior at both crack tips and at the transition between conducting and permeable zones is characterized, and intensity factors are defined accordingly. Parametric results illustrate how applied electric and magnetic fields modulate the fracture driving force; in particular, suitable magnetic loading can markedly reduce the mechanical stress intensity at the permeable tip. The formulas supply benchmark data for verification and enable design guidelines for tailoring electrode coverage and field application to mitigate interface fracture. The approach provides an analytic framework for mixed electromagnetic conditions in magnetoelectroelastic interface fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-275

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Adlucky, V. J., Levchenko, M. S., Loboda, V. V. (2024). Finite-element analysis of the parameters of fracture in a piezoelectric bimaterial with interface crack for various types of boundary conditions on its faces. J. Math. Sci., 279, 181–196.

DOI: 10.1007/s10958-024-07004-4

Google Scholar

[2] Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y. (2016). Interface cracks in piezoelectric materials. Smart Mater. Struct., 25(2), 023001.

DOI: 10.1088/0964-1726/25/2/023001

Google Scholar

[3] Lapusta, Y., Onopriienko, O., Loboda, V. (2017). An interface crack with partially electrically conductive crack faces under antiplane mechanical and in-plane electric loadings. Mech. Res. Commun., 81, 38–43.

DOI: 10.1016/j.mechrescom.2017.02.004

Google Scholar

[4] Lei, J., Zhang, C., Bui, T. Q. (2015). Transient dynamic interface crack analysis in magnetoelectroelastic bimaterials by a time-domain BEM. Eur. J. Mech. A/Solids, 49, 146–157.

DOI: 10.1016/j.euromechsol.2014.07.010

Google Scholar

[5] Ma, P., Su, R. K. L., Feng, W. J. (2018). Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials. Int. J. Eng. Sci., 129, 21–33.

DOI: 10.1016/j.ijengsci.2018.04.005

Google Scholar

[6] Rogowski, B. (2017). Exact solution for an anti-plane interface crack in piezoelectro-magneto-elastic bimaterials. Arch. Appl. Mech., 87(6), 593–606.

DOI: 10.1007/s00419-016-1158-0

Google Scholar

[7] Shevelova, N., Khodanen, T., Chapelle, F., Lapusta, Y., Loboda, V. (2023). A set of collinear electrically charged interfacial cracks in magnetoelectroelastic bimaterial. Acta Mech., 234(8), 4899–4915.

DOI: 10.1007/s00707-023-03642-y

Google Scholar

[8] Sulym, H. T., Piskozub, L. G., Piskozub, Y. Z., Pasternak, Y. M. (2015). Antiplane deformation of a bimaterial containing an interfacial crack with account of friction. I. Single loading. Acta Mech. Autom., 9(2), 115–121.

DOI: 10.1515/ama-2015-0020

Google Scholar

[9] Sulym, H. T., Piskozub, L. G., Piskozub, Y. Z., Pasternak, Y. M. (2015). Antiplane deformation of a bimaterial containing an interfacial crack with account of friction. II. Repeating and cyclic loading. Acta Mech. Autom., 9(3), 178–184.

DOI: 10.1515/ama-2015-0030

Google Scholar

[10] Tan, Y., Peng, F., Liu, C., Peng, D., Li, X. (2024). Fourth-order phase-field modeling for brittle fracture in piezoelectric materials. Appl. Math. Mech. (Engl. Ed.), 45, 837–856.

DOI: 10.1007/s10483-024-3118-9

Google Scholar

[11] Tian, W., Zhong, Z., Li, Y. (2016). Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading. Smart Mater. Struct., 25(1), 015029.

DOI: 10.1088/0964-1726/25/1/015029

Google Scholar

[12] Tian, X., Zhang, Y., Ma, H., Ding, X. (2024). Analysis of an interface crack between piezoelectric semiconductor coating and elastic substrate structure. Mathematics, 12(8), 1208.

DOI: 10.3390/math12081208

Google Scholar

[13] Yan, Z., Feng, W. J., Zhang, C., Liu, J. X. (2019). The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric-piezomagnetic bi-layered structures. Comput. Mech., 64(5), 1303–1319.

DOI: 10.1007/s00466-019-01709-z

Google Scholar

[14] Yan, Z., Feng, W. J., Zhang, C. (2021). Interfacial crack growth in piezoelectric-piezomagnetic bi-layered structures with a modified mechanical energy release rate criterion. Compos. Struct., 275, 113344.

DOI: 10.1016/j.compstruct.2020.113344

Google Scholar

[15] Yu, H., Zhu, S., Ma, H., Wang, J. (2024). Interface crack analysis of piezoelectric laminates considering initial strain. Int. J. Mech. Sci., 271, 109104.

DOI: 10.1016/j.ijmecsci.2024.109104

Google Scholar

[16] Yu, T., Bui, T. Q., Liu, P., et al. (2015). Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. Int. J. Solids Struct., 67–68, 205–218.

DOI: 10.1016/j.ijsolstr.2015.03.037

Google Scholar

[17] Zhao, X., Liu, J. X., Qian, Z. H., Gao, C. F. (2019). Transient fracture of a piezoelectric-piezomagnetic sandwich structure: anti-plane case. Acta Mech., 230(5), 1233–1246.

DOI: 10.1007/s00707-017-2030-1

Google Scholar

[18] Zhao, X., Qian, Z., Liu, J., Gao, C. (2020). Effects of electric/magnetic impact on the transient fracture of interface crack in piezoelectric-piezomagnetic sandwich structure: anti-plane case. Appl. Math. Mech. (Engl. Ed.), 41(1), 139–156.

DOI: 10.1007/s10483-020-2552-5

Google Scholar

[19] Zhu, S., Yu, H., Wang, Z. (2025). Interfacial dynamic impermeable crack analysis in dissimilar piezoelectric materials by a new interaction integral. Compos. Struct., 257, 118668.

DOI: 10.1016/j.compstruct.2024.118668

Google Scholar

[20] Viun, O., Loboda, V., Lapusta, Y. (2015). Periodic limited permeable cracks in magneto-electro-elastic media. Acta Mech., 226(12), 2225–2233.

DOI: 10.1007/s00707-014-1296-9

Google Scholar