[1]
H. Callioglu, S. Muftu, Stress analysis and modeling of rotating functionally graded discs with variable geometry using support vector regression, World J. Eng. (2025).
DOI: 10.1108/WJE-01-2025-0026
Google Scholar
[2]
T. Dai, H.L. Dai, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed, Appl. Math. Model. 40 (2016) 7689–7707.
DOI: 10.1016/j.apm.2016.03.025
Google Scholar
[3]
Y. Zheng, H. Bahaloo, D. Mousanezhad, et al., Displacement and stress fields in a functionally graded fiber-reinforced rotating disk with nonuniform thickness and variable angular velocity, J. Eng. Mater. Technol. 139 (2017) 1–10.
DOI: 10.1115/1.4036242
Google Scholar
[4]
A.S. Lebedev, A.Y. Pavlov, F. Richer, A.A. Adamchuk, Experience gained from operation of the GTE-160 gas turbine installation and prospects for its modernization, Thermal Eng. 60 (2) (2013) 89–91.
DOI: 10.1134/s0040601513020043
Google Scholar
[5]
G.G. Ol'khovskii, Prospective gas turbine and combined-cycle units for power engineering (a review), Thermal Eng. 60 (2) (2013) 79–88.
DOI: 10.1134/s0040601513020067
Google Scholar
[6]
O. Krantovska, M. Petrov, L. Ksonshkevych, M. Orešković, S. Synii, N. Іsmailova, Numerical simulation of the stress-strain state of complex-reinforced elements, Tehnički glasnik 13 (2) (2019) 110–115.
DOI: 10.31803/tg-20190417112619
Google Scholar
[7]
R.L. Rogachev, S.V. Ivanova, A.V. Sergeev, N.A. Kuznetsov, K.B. Sargsyan, S.Kh. Eritsyan, V.S. Voskanyan, G.S. Petrosyan, A.S. Antonyan, Experience gained with fitting the combined-cycle plant of unit 5 at the Razdan thermal power station with automated control systems, Thermal Eng. 60 (10) (2013) 714–721.
DOI: 10.1134/s0040601513100054
Google Scholar
[8]
P. Olivucci, D.J. Wise, P. Ricco, Reduction of turbulent skin-friction drag by passively rotating discs, J. Fluid Mech. 923 (2021) A8.
DOI: 10.1017/jfm.2021.533
Google Scholar
[9]
H. Zharfi, H. Ekhteraei Toussi, Time dependent creep analysis in thick FGM rotating disk with two-dimensional pattern of heterogeneity, Int. J. Mech. Sci. 140 (2018) 351–360.
DOI: 10.1016/j.ijmecsci.2018.03.010
Google Scholar
[10]
J. Jelwan, M. Chowdhury, G. Pearce, Creep life design criterion and its applications to pressure vessel codes, Mater. Phys. Mech. 11 (2011) 157–182.
Google Scholar
[11]
D.D. Deivedi, V.K. Gupta, A.K. Dham, Investigating the effect of thickness profile of a rotating functionally graded disc on its creep behavior, J. Thermoplast. Compos. Mater. 26 (4) (2011) 461–475.
DOI: 10.1177/0892705711425845
Google Scholar
[12]
H. Zharfi, H. Ekhteraei Toussi, Numerical creep analysis of FGM rotating disc with GDQ method, J. Theor. Appl. Mech. 55 (1) (2017) 331–341.
DOI: 10.15632/jtam-pl.55.1.331
Google Scholar
[13]
H. Zharfi, Creep relaxation in FGM rotating disc with nonlinear axisymmetric distribution of heterogeneity, Theor. Appl. Mech. Lett. 9 (6) (2019) 382–390.
DOI: 10.1016/j.taml.2019.05.005
Google Scholar
[14]
M.H. Jalali, M.R. Jalali, Stress analysis of rotating functionally graded polar orthotropic disk under thermomechanical loading, J. Vibroeng. 22 (3) (2020) 640–656.
DOI: 10.21595/jve.2019.20575
Google Scholar
[15]
D. Babets, Rock mass strength estimation using structural factor based on statistical strength theory, Solid State Phenom. 277 (2018) 111–122. https://doi.org/10.4028/www.scientific.net/ SSP.277.111.
DOI: 10.4028/www.scientific.net/ssp.277.111
Google Scholar
[16]
Yu. Golovko, O. Sdvyzhkova, Cumulative triangle for visual analysis of empirical data, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu (4) (2024) 114–120.
DOI: 10.33271/nvngu/2024-4/114
Google Scholar