[1]
State Construction Standards of Ukraine, DBN V.1.3-2:2010. A system for ensuring the accuracy of geometric parameters in construction. Geodetic works in construction, Minregionbud of Ukraine, Kyiv, 2010.
Google Scholar
[2]
DSTU-N B V.1.3-1:2009. System for ensuring the accuracy of geometric parameters in construction. Measurements, calculation and control of the accuracy of geometric parameters. Guideline, Minregionbud of Ukraine, Kyiv, 2009.
Google Scholar
[3]
Instruction on topographic survey at scales of 1:5000, 1:2000, 1:1000 and 1:500, GKNTA-2.04-02-98, Main Department of Geodesy, Cartography and Cadastre, Kyiv, 1998.
Google Scholar
[4]
P. Martínez-Carricondo, F. Agüera-Vega, F. Carvajal-Ramírez, Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations, Geocarto Int. 38 (2023) 2197507.
DOI: 10.1080/10106049.2023.2197507
Google Scholar
[5]
C. Stöcker, F. Nex, M. Koeva, M. Gerke, Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing, Geo-spatial Inf. Sci. 23 (2020) 165–181.
DOI: 10.1080/10095020.2019.1710437
Google Scholar
[6]
Y. Taddia, F. Stecchi, A. Pellegrinelli, Assessment of accuracy in unmanned aerial vehicle (UAV) pose estimation with the REAL-time kinematic (RTK) method on the example of DJI Matrice 300 RTK, Sensors 23 (2023) 2092.
DOI: 10.3390/s23042092
Google Scholar
[7]
S. He, X. Chen, Z. Wang, D. Chen, X. Yang, J. Peng, A review of UAV monitoring in mining areas: current status and future perspectives, Int. J. Coal Sci. Technol. 6 (2019) 320–333.
DOI: 10.1007/s40789-019-00264-5
Google Scholar
[8]
S. Park, Y. Choi, Applications of unmanned aerial vehicles in mining from exploration to reclamation: a review, Minerals 10 (2020) 663.
DOI: 10.3390/min10080663
Google Scholar
[9]
P. Rossi, F. Mancini, M. Dubbini, F. Mazzone, A. Capra, Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis, Eur. J. Remote Sens. 50 (2017) 211–221.
DOI: 10.1080/22797254.2017.1313097
Google Scholar
[10]
G. Esposito, G. Mastrorocco, R. Salvini, M. Oliveti, P. Starita, Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy, Environ. Earth Sci. 76 (2017) 103.
DOI: 10.1007/s12665-017-6409-z
Google Scholar
[11]
X. Zhan, J. Liu, X. Lian, B. Wang, Comparative analysis of surface deformation monitoring in a mining area based on UAV-lidar and UAV photogrammetry, Photogramm. Rec. 39 (2024) 89–112.
DOI: 10.1111/phor.12490
Google Scholar
[12]
M.V. Peppa, J. Hall, J. Goodyear, J.P. Mills, Photogrammetric assessment and comparison of DJI phantom 4 pro and phantom 4 RTK small unmanned aircraft systems, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42 (2019) 503–509.
DOI: 10.5194/isprs-archives-xlii-2-w13-503-2019
Google Scholar
[13]
G. Söğütcü, Ş. Kaya, Monitoring slope stability: a comprehensive review of UAV applications in open-pit mining, Land 14 (2024) 1193.
DOI: 10.3390/land14061193
Google Scholar
[14]
V. Glotov, A. Gunina, Development and research of UAVs for aerial photography, Geodesy, Cartography and Aerial Photography 87 (2018) 68–80.
DOI: 10.23939/istcgcap2018.01.065
Google Scholar
[15]
V. Hlotov, Y. Shylo, Y. Yatskivskyi, N. Kablak, M. Nychvyd, Study of karst manifestations in Solotvyno based on aerial photography from a UAV, Rep. Geod. Geoinformatics 113 (2023) 47–54.
DOI: 10.2478/rgg-2023-0004
Google Scholar