[1]
Bentley, R. W., Mannan, S. A., & Wheeler, S. J. Global oil & gas depletion: An overview. Energy Policy, 35(2), (2007) 1021–1044
DOI: 10.1016/j.enpol.2006.01.004
Google Scholar
[2]
Kuper, I., Mykhailyshyn, B., & Lartseva, I. Identification of hydraulic fracturing impact factors on the skin effect in the near-wellbore zone of the reservoir. Technology Audit and Production Reserves, 4(1(84), (2025) 40–49
DOI: 10.15587/2706-5448.2025.333613
Google Scholar
[3]
Yang, S., Yu, W., Zhao, M., Ding, F., & Zhang, Y. A Review of Weak Gel Fracturing Fluids for Deep Shale Gas Reservoirs. Gels, 10(5), (2024) 345
DOI: 10.3390/gels10050345
Google Scholar
[4]
Mykhailyshyn, B., & Kuper, I. Improving the formulation of hydraulic fracturing fluid. Prospecting and Development of Oil and Gas Fields, 24(1), (2024) 44-54
DOI: 10.69628/pdogf/1.2024.44
Google Scholar
[5]
Wang, L. Optimization strategies for hydraulic fracturing in unconventional reservoirs: A review. International Journal of Earth Sciences Knowledge and Applications, 7(1), (2025) 122–127
Google Scholar
[6]
Liao, L., Li, G., Liang, Y., & Zeng, Y. Diagnostic fracture injection tests analysis and numerical simulation in Montney Shale formation. Energies, 15(23), (2022) Article 9094
DOI: 10.3390/en15239094
Google Scholar
[7]
Okon, A. N., & Udoh, F. D. Production optimization of gas wells using MBAL. International Journal of Petroleum and Petrochemical Engineering (IJPPE), 3(3), (2017) 90–100
DOI: 10.20431/2454-7980.0303010
Google Scholar
[8]
Wang, J., Zhou, F., Bai, H., Li, Y., & Yang, H. A comprehensive method to evaluate the viscous slickwater as fracturing fluids for hydraulic fracturing applications. Journal of Petroleum Science and Engineering, 193, (2020) 107359
DOI: 10.1016/j.petrol.2020.107369
Google Scholar
[9]
Yang, S., Yu, W., Zhao, M., Ding, F., & Zhang, Y. A review of weak gel fracturing fluids for deep shale gas reservoirs. Gels, 10(5), (2024) 345
DOI: 10.3390/gels10050345
Google Scholar
[10]
Cao, X., et al. Comparative studies on hydraulic fracturing fluids for high-temperature and high-salt oil reservoirs: Synthetic polymer versus guar gum. ACS Omega, 6(39), (2021) 25421–25429
DOI: 10.1021/acsomega.1c03394
Google Scholar
[11]
Abdelaal, A. A., Aljawad, M. S., Alyousef, Z., & Almajid, M. M. A review of foam-based fracturing fluids applications: From lab studies to field implementations. Journal of Natural Gas Science and Engineering, 95, (2021) 104236
DOI: 10.1016/j.jngse.2021.104236
Google Scholar
[12]
Zhao, M.-W., et al. Preparation and performance evaluation of the slickwater fracturing fluid with high temperature resistance. Petroleum Science. (2024)
DOI: 10.1016/j.petsci.2023.11.004
Google Scholar
[13]
Cai, Y., & Dahi Taleghani, A. Incorporating injection stage into DFIT analysis for permeability estimation, and its significance. Journal of Petroleum Science and Engineering, 215, (2022) 110519
DOI: 10.1016/j.petrol.2022.110519
Google Scholar
[14]
Ye, F., Li, X., Zhang, N., & Xu, F. Prediction of single-well production rate after hydraulic fracturing in unconventional gas reservoirs based on ensemble learning model. Processes, 12(6), (2024) 1194
DOI: 10.3390/pr12061194
Google Scholar
[15]
Cinco-Ley, H., & Samaniego, V. F. Transient pressure analysis for fractured wells. Journal of Petroleum Technology, 33(9), (1981) 1749–1766
DOI: 10.2118/7490-PA
Google Scholar
[16]
Abdel Azim, R., Khosravanian, R., & Aghajanpour, A. Estimation of shale gas reserves: A modified material balance equation including adsorbed gas and stress sensitivity. Processes, 11(6), (2023) 1746
DOI: 10.3390/pr11061746
Google Scholar
[17]
Yang, L., Zhang, Y., Ma, Z., & Ju, B. Modified flowing material balance equation for shale gas reservoirs. Processes, 10(6), (2022) 1198. https://doi.org/10.3390/pr10061198 PMC
Google Scholar