[1]
A.P. Krukovskiy, V.V. Krukovskaya, Research of the stress condition of massif around mine working with bolting at the drive working by blast-hole drilling, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1 (2012) 34–39.
Google Scholar
[2]
O.P. Krukovskyi, V.V. Krukovska, Stability of anchored mine during drilling-and-blasting operations, Physical and Technical Problems of Mining Production 21 (2019) 67–77
DOI: 10.37101/ftpgp21.01.006
Google Scholar
[3]
P. Zhang, C. Zhang, W. Chen, C. He, Y. Liu, Z. Chu, Numerical study of surrounding rock damage in deep-buried tunnels for building-integrated underground structures, Buildings 15 (2025) 2168
DOI: 10.3390/buildings15132168
Google Scholar
[4]
Z. Tao, Z. Song, M. He, Z. Meng, S. Pang, Principles of the roof cut short-arm beam mining method (110 method) and its mining-induced stress distribution, Int. J. Min. Sci. Tech. 28 (2018) 391–396
DOI: 10.1016/j.ijmst.2017.09.002
Google Scholar
[5]
Y. Wang, C. Zhai, T. Liu, X. Yu, J. Xu, Y. Sun, Y. Cong, W. Tang, Y. Zheng, N. Luo, Analysis of fracture network formation mechanisms and main controlling factors of methane explosion fracturing in deep shale reservoir, Rock Mech. Rock Eng. 57 (2024) 7125–7147
DOI: 10.1007/s00603-024-03908-4
Google Scholar
[6]
S.K. Ray, A.M. Khan, N.K. Mohalik, D. Mishra, S. Mandal, J.K. Pandey, Review of preventive and constructive measures for coal mine explosions: An Indian perspective, Int. J. Min. Sci. Tech., 32 (2022) 471–485
DOI: 10.1016/j.ijmst.2022.02.001
Google Scholar
[7]
A.V. Chernai, M.M. Nalysko, H.S. Derevianko The kinetics of the methane acidification by the oxygen and its role in the blast air wave formation in mine workings. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1 (2016) 63–69.
Google Scholar
[8]
Y. Zhu, D. Wang, Z. Shao, C. Xu, M. Li, Y. Zhang, Characteristics of methane-air explosions in large-scale tunnels with different structures. Tunn. Undergr. Space Technol. 109 (2021) 103767
DOI: 10.1016/j.tust.2020.103767
Google Scholar
[9]
S. Wasilewski, N. Szlązak, P. Jamróz, An analysis of the methane explosion in the area of the return shaft bottom at mine, Arch. Min. Sci. 69 (2024) 89–105. https://doi.org/10.24425/ ams.2024.149829
DOI: 10.24425/ams.2024.149829
Google Scholar
[10]
H. Copur, M. Cinar, G. Okten, N. Bilgin, A case study on the methane explosion in the excavation chamber of an EPB-TBM and lessons learnt including some recent accidents. Tunn. Undergr. Space Technol. 27 (2012) 159–167
DOI: 10.1016/j.tust.2011.06.009
Google Scholar
[11]
S.A. Kalyakin, N.R. Shevtsov, I.V. Kupenko, Creation of an effective explosion protection system for coal mines, Coal of Ukraine 2 (2012) 24–30.
Google Scholar
[12]
Ageev V.G. Problems of preventing and localizing methane explosions in mines, Mine rescue 46 (2009) 5–10.
Google Scholar
[13]
N. Nalisko, Initiation local accumulations of methane shock wave in the air accidental explosions in mines. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University 102 (2017) 104–110.
Google Scholar
[14]
Q.Hu, Q. Zhang, M. Yuan, X. Qian, M. Li, H. Wu, X. Shen, Y. Liang, Traceability and failure consequences of natural gas explosion accidents based on key investigation technology, Eng. Fail. Anal. 139 (2022) 106448
DOI: 10.1016/j.engfailanal.2022.106448
Google Scholar
[15]
D. Chen, C. Wu, J. Li, K. Liao, An overpressure-time history model of methane-air explosion in tunnel-shape space, Journal of Loss Prevention in the Process Industries 82 (2023) 105004
DOI: 10.1016/j.jlp.2023.105004
Google Scholar
[16]
S. Wang, Z. Li, Q. Fang, H. Yan, L. Chen, Performance of utility tunnels under gas explosion loads, Tunn. Undergr. Space Technol. 109 (2021) 103762
DOI: 10.1016/j.tust.2020.103762
Google Scholar
[17]
LS-DYNA Keyword user's manual version 971, Livermore Software Technology Corporation, Livermore, California, USA, 2007.
Google Scholar
[18]
A.K. Verma, M.K. Jha, S. Mantrala, T.G. Sitharam, Numerical simulation of explosion in twin tunnel system, Geotech. Geol. Eng. 35 (2017) 1953–1966
DOI: 10.1007/s10706-017-0219-7
Google Scholar
[19]
S. Wang, Z. Li, Q. Fang, H. Yan, Y. Liu, Numerical simulation of overpressure loads generated by gas explosions in utility tunnels, Process Safety and Environmental Protection 161 (2022) 100–117
DOI: 10.1016/j.psep.2022.03.014
Google Scholar
[20]
A. Bejan, Convection heat transfer, John Wiley & Sons, Hoboken, New Jersey, Canada, 2013.
Google Scholar
[21]
O. Zienkiewicz, R. Taylor, The finite element method, Butterworth-Heinemann, Oxford, UK, 2000.
Google Scholar
[22]
R. Cook, Finite element modeling for stress analysis, John Wiley & Sons, Hoboken, New Jersey, Canada, 1995.
Google Scholar
[23]
M. Breuss, The correct use of the Lax–Friedrichs method, ESAIM: M2AN 38(3) (2004) 519–540
DOI: 10.1051/m2an:2004027
Google Scholar
[24]
X. Sun, G. Wang, Y. Ma, A new modified Local Lax–Friedrichs scheme for scalar conservation laws with discontinuous flux, Appl. Math. Lett. 105 (2020) 106328
DOI: 10.1016/j.aml.2020.106328
Google Scholar