Impact of Degassing Parameters on the Efficiency of Gas Hydrate Extraction

Article Preview

Abstract:

Gas hydrates, crystalline water-methane structures, offer vast energy potential but require optimized degassing for methane extraction. This theoretical study evaluates key parameters – pressure, temperature, chemical inhibitors, and geological conditions – using literature data. Depressurization (10→2 MPa) boosts dissociation rates by 50% but risks sediment instability. Thermal stimulation (2°C→10°C) enhances yields, with marine sediments (60–80% efficiency) outperforming permafrost (40–60%). Chemical inhibitors (e.g., methanol, 10–20% concentration) improve yields but face environmental and cost hurdles; saline solutions offer safer alternatives (30–50% yields). High porosity (30–40%) and permeability (10⁻¹² m²) increase recovery by 25%, while clay-rich formations reduce efficiency by 15%. Kinetic and equilibrium models provide insights but lack real-world validation. The study highlights the need for experimental tests to refine models and assess environmental impacts. Tailored strategies balancing dissociation speed with geomechanical stability and ecological safeguards could enable sustainable extraction. This work advances foundational knowledge for industrial-scale methane recovery from hydrates, emphasizing the potential of integrated approaches to unlock this unconventional resource.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-133

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Monaghan, Unconventional energy resources in a crowded subsurface: Reducing uncertainty and developing a separation zone concept for resource estimation and deep 3D subsurface planning using legacy mining data, J. Science of the Total Environment (2017).

DOI: 10.1016/j.scitotenv.2017.05.125

Google Scholar

[2] P.C. Hackley, P.D. Warwick, W.A. Ambrose, B.J. Cardott, J.R. Levine et al., Unconventional energy resources: 2015 review, J. Natural Resources Research 24(3) (2015) 243-319.

DOI: 10.1007/s11053-015-9288-6

Google Scholar

[3] S. Matkivskyi, Optimization of gas recycling technique in development of gas-condensate fields, J. Min. Miner. Depos. 17(1) (2023) 101-107.

DOI: 10.33271/mining17.01.101

Google Scholar

[4] O.A. Pashchenko, N.A. Borodina, O.O. Yavorska, V.V. Ishkov, O.V. Cherniaiev, Application of polymer flooding to increase oil recovery, J. IOP Conference Series: Earth and Environmental Science 1415(1) (2024) 012054.

DOI: 10.1088/1755-1315/1415/1/012054

Google Scholar

[5] A.T. Zholbassarova, R.Y. Bayamirova, B.T. Ratov, V.L. Khomenko, A.R. Togasheva, Development of technology for intensification of oil production using emulsion based on natural gasoline and solutions of nitrite compounds, J. SOCAR Proceedings 1 (2024) 00965.

DOI: 10.5510/OGP20240200965

Google Scholar

[6] O. Pashchenko, V. Khomenko, V. Ishkov, Y. Koroviaka, R. Kirin, S. Shypunov, Protection of drilling equipment against vibrations during drilling, J. IOP Conference Series: Earth and Environmental Science 1348(1) (2024) 012004.

DOI: 10.1088/1755-1315/1348/1/012004

Google Scholar

[7] R. Bayamirova, A. Sudakov, A. Togasheva, M. Sarbopeyeva, Application of flow-diversion technologies to increase oil recovery at the Uzen field, J. E3S Web of Conferences 567 (2024) 01003.

DOI: 10.1051/e3sconf/202456701003

Google Scholar

[8] O.A. Pashchenko, V.L. Khomenko, B.T. Ratov, Ye.A. Koroviaka, V.O. Rastsvietaiev, Comprehensive approach to calculating operational parameters in hydraulic fracturing, J. IOP Conference Series: Earth and Environmental Science 1415(1) (2024) 012080.

DOI: 10.1088/1755-1315/1415/1/012080

Google Scholar

[9] V. Khomenko, O. Pashchenko, B. Ratov, R. Kirin, S. Svitlychnyi, A. Moskalenko, Optimization of the technology of hoisting operations when drilling oil and gas wells, J. IOP Conference Series: Earth and Environmental Science 1348(1) (2024) 012008.

DOI: 10.1088/1755-1315/1348/1/012008

Google Scholar

[10] A. Embaby, A. Ismael, F.A. Ali, H.A. Farag, B.G. Mousa, S. Gomaa, M. Elwageeh, An approach based on Machine Learning Algorithms, Geostatistical Technique, and GIS analysis to estimate phosphate ore grade at the Abu Tartur Mine, Western Desert, Egypt, J. Min. Miner. Depos. 17(1) (2023) 108-119.

DOI: 10.33271/mining17.01.108

Google Scholar

[11] Z.B. Bekeshova, B.T. Ratov, A.K. Sudakov, K.A. Kozhakhmet, D.A. Sudakova, Assessment of the oil and gas potential of the eastern edge of the northern Ustyurt using new geophysical data, J. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5 (2024).

DOI: 10.33271/nvngu/2024-5/005

Google Scholar

[12] V. Lozynskyi, Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG), J. Min. Miner. Depos. 17(3) (2023) 67-85.

DOI: 10.33271/mining17.03.067

Google Scholar

[13] K.N. Soe, H. Doe, T. Kitagawa, Potentiometric study of cadmium (II) halide and thiocyanate complexes in methanol: Determination of thermodynamic stability constants of third and fourth complexation step, J. Bulletin of the Chemical Society of Japan 61 (1988) 2981-2985.

DOI: 10.1246/bcsj.61.2981

Google Scholar

[14] A. Fernández, P. Segarra, J.A. Sanchidrián, R. Navarro, Ore/waste identification in underground mining through geochemical calibration of drilling data using machine learning techniques, J. Ore Geology Reviews 167 (2024) 106045.

DOI: 10.1016/j.oregeorev.2024.106045

Google Scholar

[15] O. Pashchenko, V. Khomenko, B. Ratov, N. Borodina, O. Fedyk, Use of gravel filters with bitumen binder in oil wells, J. IOP Conference Series: Earth and Environmental Science 1491 (2025) 012012.

DOI: 10.1088/1755-1315/1491/1/012012

Google Scholar

[16] I. Chudyk, M. Biletskiy, B. Ratov, A. Sudakov, A. Borash, A new method of oil and water well completion involving the implosion effect, J. IOP Conference Series: Earth and Environmental Science 1348 (2024) 012056.

DOI: 10.1088/1755-1315/1348/1/012056

Google Scholar

[17] B. Ratov, A. Borash, M. Biletskiy, V. Khomenko, Y. Koroviaka, Identifying the operating features of a device for creating implosion impact on the water bearing formation, J. Eastern-European Journal of Enterprise Technologies 2(13) (2023) 36-44.

DOI: 10.15587/1729-4061.2023.287447

Google Scholar

[18] M. Petlovanyi, K. Sai, O. Khalymendyk, O. Borysovska, Y. Sherstiuk, Analytical research of the parameters and characteristics of new "quarry cavities – backfill material" systems: Case study of Ukraine, J. Min. Miner. Depos. 17(3) (2023) 126-139.

DOI: 10.33271/mining17.03.126

Google Scholar

[19] S. Muratova, B. Ratov, V. Khomenko, O. Pashchenko, O. Kamyshatskyi, Improvement of the methodology for measuring plastic viscosity and dynamic shear stress of drilling fluids, J. IOP Conference Series: Earth and Environmental Science 1491 (2025) 012026.

DOI: 10.1088/1755-1315/1491/1/012026

Google Scholar

[20] P.P. Kumar, A.G. Kalinichev, R.J. Kirkpatrick, Dissociation of carbonic acid: Gas phase energetics and mechanism from ab initio metadynamics simulations, J. Journal of Chemical Physics 126(20) (2007) 204315.

DOI: 10.1063/1.2741552

Google Scholar

[21] I. Chudyk, I. Sudakova, A. Dreus, A. Pavlychenko, A. Sudakov, Determination of the thermal state of a block gravel filter during its transportation along the borehole, J. Min. Miner. Depos. 17(4) (2023) 75-82.

DOI: 10.33271/mining17.04.075

Google Scholar

[22] T. Uchida, S. Takeya, L.D. Wilson, C.A. Tulk, J.A. Ripmeester, Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction, J. Canadian Journal of Physics 81(1-2) (2003) 351-357.

DOI: 10.1139/p03-017

Google Scholar

[23] V. Bondarenko, I. Kovalevska, V. Krasnyk, V. Chernyak, O. Haidai, R. Sachko, I. Vivcharenko, Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations, J. Min. Miner. Depos. 18(1) (2024) 67-81.

DOI: 10.33271/mining18.01.067

Google Scholar

[24] B. Ratov, A. Pavlychenko, R. Kirin, O. Pashchenko, V. Khomenko, N. Tileuberdi, O. Kamyshatskyi, S. Serebriak, A. Seidaliyev, S. Muratova, Using Machine Learning to Model Mechanical Processes in Mining: Theory, Practice, and Legal Considerations, J. Engineered Science 33 (2025) 1419.

DOI: 10.30919/es1419

Google Scholar

[25] K.S. Sai, M.V. Petlovanyi, D.S. Malashkevych, A new approach to producing a prospective energy resource based on coalmine methane, J. IOP Conference Series: Earth and Environmental Science 1254(1) (2023) 012068.

DOI: 10.1088/1755-1315/1254/1/012068

Google Scholar