Approach to Optimizing Energy Consumption in Rock Destruction through Advanced Design Parameters of Cutting Elements

Article Preview

Abstract:

This study presents a novel approach to optimizing energy consumption in rock destruction by integrating advanced design parameters of cutting elements. A hybrid experimental-computational model was developed to evaluate the specific energy of destruction () across granite, limestone, and sandstone. Key findings include energy savings of 15% in granite, 12.5% in limestone, and 13.7% in sandstone, achieved by optimizing the angle of attack – 30º, edge curvature – 0.5 mm, and applying wear-resistant DLC coatings 2500 HV. Laboratory tests, field experiments, and finite element simulations validated the model's accuracy within ±6%. The study identifies critical parameter interactions, such as angle of attack and coating hardness, reducing shear stresses and wear losses. These advancements lower operational costs by approximately $50,000 annually per excavator and extend tool life. Limitations include the limited range of rock types tested and slight simulation overestimations in abrasive sandstone. Future research should explore adaptive cutting element designs with real-time parameter adjustments using sensor-based systems and machine learning. The findings offer practical recommendations for implementing optimized tools in mining and construction, enhancing efficiency and cost-effectiveness. This work bridges theoretical insights and industrial applications, providing a scalable framework for energy-efficient rock destruction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-86

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Davis, D. Hoyer, D.A. Guelleh, M. Chaari, M. Jalludin, Case study: Impacts of multi-donor project funding and project appraisal document on the exploration drilling phase of geothermal development, Fiale Caldera, Djibouti, J. Transactions - Geothermal Resources Council 47 (2023) 1234-1245.

Google Scholar

[2] V. Khomenko, O. Pashchenko, B. Ratov, R. Kirin, S. Svitlychnyi, A. Moskalenko, Optimization of the technology of hoisting operations when drilling oil and gas wells, J. IOP Conference Series: Earth and Environmental Science 1348(1) (2024) 012008.

DOI: 10.1088/1755-1315/1348/1/012008

Google Scholar

[3] A. Tosun, Determination of excavation method according to rock strength values [Kayaç Dayanımı Değerlerine Göre Kazı Yönteminin Belirlenmesi], J. Yerbilimleri/Earth Sciences 41(2) (2020) 87-98.

DOI: 10.17824/yerbilimleri.597652

Google Scholar

[4] V.L. Khomenko, B.T. Ratov, O.A. Pashchenko, O.M. Davydenko, B.R. Borash, Justification of drilling parameters of a typical well in the conditions of the Samskoye field, J. IOP Conference Series: Earth and Environmental Science 1254(1) (2023) 012052.

DOI: 10.1088/1755-1315/1254/1/012052

Google Scholar

[5] B.T. Ratov, V.L. Khomenko, Z.G. Utepov, Y.A. Koroviaka, A.A. Seidaliyev, Blade bit drilling in Kazakhstan: Achieved results, unresolved issues, J. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 1 (2025) 484.

DOI: 10.32014/2025.2518-170X.484

Google Scholar

[6] S. Ritter, H.H. Einstein, R. Galler, Planning the handling of tunnel excavation material - A process of decision making under uncertainty, J. Tunnelling and Underground Space Technology 33 (2013) 193-201.

DOI: 10.1016/j.tust.2012.08.009

Google Scholar

[7] Petlovanyi, M., Sai, K., Khalymendyk, O., Borysovska, O., & Sherstiuk, Y. (2023). Analytical research of the parameters and characteristics of new "quarry cavities – backfill material" systems: Case study of Ukraine. Mining of Mineral Deposits, 17(3), 126-139.

DOI: 10.33271/mining17.03.126

Google Scholar

[8] B. Ratov, B. Fedorov, A. Isonkin, M. Ibyldaev, B. Borash, Increasing the efficiency of drilling bit use in hard rocks by high-quality performance of a diamond-carrying matrix, J. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM (2022).

DOI: 10.5593/sgem2022/1.1/s03.036

Google Scholar

[9] B.T. Ratov, V.L. Khomenko, A.E. Kuttybayev, K.S. Togizov, Z.G. Utepov, Innovative drill bit to improve the efficiency of drilling operations at uranium deposits in Kazakhstan, J. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 1 (2024) 437.

DOI: 10.32014/2024.2518-170X.437

Google Scholar

[10] Yu. Vynnykov, M. Kharchenko, S. Manhura, A. Aniskin, A. Manhura, Degradation of the internal well equipment steel under continuous service in the corrosive and aggressive environments, J. Min. Miner. Depos. 17(1) (2023) 84-92.

DOI: 10.33271/mining17.01.084

Google Scholar

[11] O. Pashchenko, B. Ratov, V. Khomenko, A. Gusmanova, E. Omirzakova, Methodology for optimizing drill bit performance, J. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM (2024).

DOI: 10.5593/sgem2024/1.1/s06.78

Google Scholar

[12] B. Ratov, B. Fedorov, V. Khomenko, A. Kuttybayev, M. Sarbopeyeva, Development of a combined spud bit for drilling technological wells in Kazakhstan, J. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM (2024).

DOI: 10.5593/sgem2024/1.1/s06.71

Google Scholar

[13] O. Pashchenko, V. Khomenko, V. Ishkov, Y. Koroviaka, R. Kirin, S. Shypunov, Protection of drilling equipment against vibrations during drilling, J. IOP Conference Series: Earth and Environmental Science 1348(1) (2024) 012004.

DOI: 10.1088/1755-1315/1348/1/012004

Google Scholar

[14] B. Ratov, M. Rucki, B. Fedorov, E. Hevorkian, Z. Siemiatkowski et al., Calculations on enhancement of polycrystalline diamond bits through addition of superhard diamond-reinforced elements, J. Machines 11(4) (2023) 453.

DOI: 10.3390/machines11040453

Google Scholar

[15] V. Moni, M. Rehor, L. Donát, F. Helebrant, Pilot plant testing of gauge edge in real conditions of KU 800 excavator during hard structure mining, J. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM (2020).

DOI: 10.5593/sgem2020/1.2/s03.027

Google Scholar

[16] B.T. Ratov, V.A. Mechnik, N.A. Bondarenko, V.N. Kolodnitsky, V.L. Khomenko et al., Increasing the durability of an impregnated diamond core bit for drilling hard rocks, J. SOCAR Proceedings 1 (2024) 936.

DOI: 10.5510/OGP20240100936

Google Scholar

[17] A. Ihnatov, J.S. Haddad, Y. Koroviaka, O. Aziukovskyi, V. Rastsvietaiev, O. Dmytruk, Study of Rational Regime and Technological Parameters of the Hydromechanical Drilling Method, J. Archives of Mining Sciences 68(2) (2023) 285-299.

DOI: 10.24425/ams.2023.146180

Google Scholar

[18] B. Forsman, C.L. Pan, Shear properties of fragmented rock masses-model tests and theories, J. International Journal of Rock Mechanics and Mining Sciences 26(3) (1989) 219-230.

DOI: 10.1016/0148-9062(89)90522-6

Google Scholar

[19] E. Th. Stamboliadis, Energy distribution in comminution: A new approach to the laws of Rittinger, Bond and Kick, J. Canadian Metallurgical Quarterly 43(2) (2004) 249-256.

DOI: 10.1179/cmq.2004.43.2.249

Google Scholar

[20] B.T. Ratov, B.V. Fedorov, A.Kh. Syzdykov, S.T. Zakenov, A.K. Sudakov, The main directions of modernization of rock-destroying tools for drilling solid mineral resources, J. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM (2021).

DOI: 10.5593/sgem2021/1.1/s03.062

Google Scholar

[21] R. Kirin, A. Yevstihnieiev, A. Vyprytskyi, S. Sieriebriak, Legal aspects of mining in Ukraine: European integration vector, J. Min. Miner. Depos. 17(2) (2023) 44-52.

DOI: 10.33271/mining17.02.044

Google Scholar

[22] Y.A. Koroviaka, A.O. Ihnatov, A.V. Pavlychenko, K. Valouch, V.O. Rastsvietaiev et al., Studying the performance features of drilling rock destruction and technological tools, J. Journal of Superhard Materials 45(6) (2023) 423-435.

DOI: 10.3103/S1063457623060059

Google Scholar

[23] L.Q. Nguyen, T.T.T. Le, T.G. Nguyen, D.T. Tran, Prediction of underground mining-induced subsidence: Artificial neural network based approach, J. Min. Miner. Depos. 17(4) (2023) 45-52.

DOI: 10.33271/mining17.04.045

Google Scholar

[24] I. Chudyk, I. Sudakova, A. Dreus, A. Pavlychenko, A. Sudakov, Determination of the thermal state of a block gravel filter during its transportation along the borehole, J. Min. Miner. Depos. 17(4) (2023) 75-82.

DOI: 10.33271/mining17.04.075

Google Scholar

[25] U. Atici, A. Ersoy, Correlation of specific energy of cutting saws and drilling bits with rock brittleness and destruction energy, J. Journal of Materials Processing Technology 209(5) (2009) 2602-2612.

DOI: 10.1016/j.jmatprotec.2008.06.004

Google Scholar

[26] A.O. Ihnatov, Y.A. Koroviaka, J. Haddad, B.A. Tershak, T.M. Kaliuzhna, V.V. Yavorska, Experimental and Theoretical Studies on the Operating Parameters of Hydromechanical Drilling, J. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu (1) (2022) 20-27.

DOI: 10.33271/nvngu/2022-1/020

Google Scholar

[27] B. Ratov, A. Pavlychenko, R. Kirin, O. Pashchenko, V. Khomenko, N. Tileuberdi, O. Kamyshatskyi, S. Sieriebriak, A. Seidaliyev, S. Muratova, Using Machine Learning to Model Mechanical Processes in Mining: Theory, Practice, and Legal Considerations, J. Engineered Science 33 (2025) 1419.

DOI: 10.30919/es1419

Google Scholar

[28] A.O. Kozhevnykov, А.Yu. Dreus, Liu Baochang, A.K. Sudakov, Drilling fluid circulation rate infuence on the contact temperature during borehole drilling, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1(163) (2018) 35-43.

DOI: 10.29202/nvngu/2018-1/14

Google Scholar

[29] А.К. Sudakov, О.Ye. Khomenko, M.L. Isakova, D.A. Sudakova, Concept of numerical experiment of isolation of absorptive horizons by thermoplastic materials, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5(155) (2016) 12-16. EID: 2-s2.0-85006377275.

Google Scholar

[30] V. Bondarenko, I. Kovalevska, V. Krasnyk, V. Chernyak, O. Haidai, R. Sachko, I. Vivcharenko, Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations, J. Min. Miner. Depos. 18(1) (2024) 67-81.

DOI: 10.33271/mining18.01.067

Google Scholar

[31] T. Brown, F. Neumann, I. Riepin, Price formation without fuel costs: The interaction of demand elasticity with storage bidding, J. Energy Economics 128 (2025) 108483.

DOI: 10.1016/j.eneco.2025.108483

Google Scholar

[32] A. Ihnatov, Analyzing mechanics of rock breaking under conditions of hydromechanical drilling, J. Mining of Mineral Deposits 15(3) (2021) 122-129.

DOI: 10.33271/mining15.03.122

Google Scholar