Comparative Analysis of Contact Stress Models for Optimizing Rock-Destroying Elements in Drilling Operations

Article Preview

Abstract:

This research evaluates analytical, semi-empirical, and numerical models for predicting contact stresses in the interaction between rock-destroying elements and rock formations, a critical factor influencing wear, cutting efficiency, and energy consumption in drilling operations. The Hertzian analytical model, semi-empirical model with experimental calibration, and a Finite Element Method model incorporating plastic deformation via the Drucker-Prager criterion are compared for accuracy and applicability. Mock experimental data, based on rock mechanics literature, validates the models, revealing average prediction errors of 28%, 12%, and 4% for the Hertzian, semi-empirical, and Finite Element Method models, respectively. The Hertzian model is computationally efficient but inaccurate in nonlinear conditions, the semi-empirical model balances accuracy and practicality in calibrated scenarios, and the Finite Element Method model excels in complex formations despite high computational demands. Graphical comparisons within the contact radius highlight the Finite Element Method model’s ability to capture plastic effects, making it ideal for optimizing rock-destroying elements design in challenging geological environments. The findings underscore the importance of selecting models based on operational requirements, with the Finite Element Method model recommended for high-precision applications in deep or unconventional drilling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-96

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Sun, Z. Huang, W. Zou, X. Wu, Z. Mu et al., Cracking Behaviors of Rocks Subjected to the Dynamic Percussion of a Single PDC Cutter: A Finite-Discrete Element Study, J. Rock Mechanics and Rock Engineering (2025).

DOI: 10.1007/s00603-024-04290-x

Google Scholar

[2] B.T. Ratov, V.L. Khomenko, Z.G. Utepov, Y.A. Koroviaka, A.A. Seidaliyev, Blade bit drilling in Kazakhstan: Achieved results, unresolved issues, J. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 1 (2025) 484.

DOI: 10.32014/2025.2518-170X.484

Google Scholar

[3] S. Matkivskyi, Optimization of gas recycling technique in development of gas-condensate fields, J. Min. Miner. Depos. 17(1) (2023) 101-107.

DOI: 10.33271/mining17.01.101

Google Scholar

[4] B.T. Ratov, I.A. Chudik, B.V. Fedorov, A.K. Sudakov, B.R. Borash, Results of production tests of an experimental diamond crown during exploratory drilling in Kazakhstan, J. SOCAR Proc. 2 (2023) 23–29.

DOI: 10.5510/OGP20230200842

Google Scholar

[5] V.L. Khomenko, B.T. Ratov, O.A. Pashchenko, O.M. Davydenko, B.R. Borash, Justification of drilling parameters of a typical well in the conditions of the Samskoye field, J. IOP Conf. Ser.: Earth and Environmental Science 1254(1) (2023) 012052.

DOI: 10.1088/1755-1315/1254/1/012052

Google Scholar

[6] B.T. Ratov, V.L. Khomenko, A.E. Kuttybayev, K.S. Togizov, Z.G. Utepov, Innovative drill bit to improve the efficiency of drilling operations at uranium deposits in Kazakhstan, J. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 1 (2024) 437.

DOI: 10.32014/2024.2518-170X.437

Google Scholar

[7] R. Kirin, A. Yevstihnieiev, A. Vyprytskyi, S. Sieriebriak, Legal aspects of mining in Ukraine: European integration vector, J. Min. Miner. Depos. 17(2) (2023) 44-52.

DOI: 10.33271/mining17.02.044

Google Scholar

[8] Ye.A. Koroviaka, A.O. Ihnatov, A.V. Pavlychenko, K. Valouch, V.O. Rastsvietaiev et al., Studying the performance features of drilling rock destruction and technological tools, J. Superhard Mater. 45(6) (2023) 423–435.

DOI: 10.3103/S1063457623060059

Google Scholar

[9] V. Lozynskyi, Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG), J. Min. Miner. Depos. 17(3) (2023) 67-85.

DOI: 10.33271/mining17.03.067

Google Scholar

[10] M. Petlovanyi, K. Sai, O. Khalymendyk, O. Borysovska, Y. Sherstiuk, Analytical research of the parameters and characteristics of new "quarry cavities – backfill material" systems: Case study of Ukraine, J. Min. Miner. Depos. 17(3) (2023) 126-139.

DOI: 10.33271/mining17.03.126

Google Scholar

[11] L.Q. Nguyen, T.T.T. Le, T.G. Nguyen, D.T. Tran, Prediction of underground mining-induced subsidence: Artificial neural network based approach, J. Min. Miner. Depos. 17(4) (2023) 45-52.

DOI: 10.33271/mining17.04.045

Google Scholar

[12] B. Ratov, B. Fedorov, V. Khomenko, A. Kuttybayev, M. Sarbopeyeva, Development of a combined spud bit for drilling technological wells in Kazakhstan, J. SGEM Conf. Proc. (2024).

DOI: 10.5593/sgem2024/1.1/s06.71

Google Scholar

[13] B.T. Ratov, B.V. Fedorov, A.Kh. Syzdykov, S.T. Zakenov, A.K. Sudakov, The main directions of modernization of rock-destroying tools for drilling solid mineral resources, J. SGEM Conf. Proc. (2021).

DOI: 10.5593/sgem2021/1.1/s03.062

Google Scholar

[14] B.T. Ratov, V.A. Mechnik, N.A. Bondarenko, V.N. Kolodnitsky, V.L. Khomenko et al., Increasing the durability of an impregnated diamond core bit for drilling hard rocks, J. SOCAR Proc. 1 (2024) 936.

DOI: 10.5510/OGP20240100936

Google Scholar

[15] R.S. Kirin, V.L. Khomenko, O.Yu. Illarionov, Ye.A. Koroviaka, Dichotomy of legal provision of ecological safety in excavation, extraction and use of coal mine methane, J. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5 (2022) 128–135.

DOI: 10.33271/nvngu/2022-5/128

Google Scholar

[16] U.B. Sathuvalli, S. Rahman, J. Wooten, P.V. Suryanarayana, Wear efficiency of oil-well casings exposed to rotating tool joints, J. Procedia Structural Integrity (2016).

DOI: 10.1016/j.prostr.2016.06.223

Google Scholar

[17] J. Molgaard, A.N. Abugharara, C.A. Hurich, S.D. Butt, Study of the relationship between oriented downhole dynamic weight on bit and drilling parameters in coring isotropic natural and synthetic rocks, J. Proc. Int. Conf. on Offshore Mechanics and Arctic Engineering - OMAE (2019).

DOI: 10.1115/OMAE2019-96176

Google Scholar

[18] G.S. Schajer, M. Steinzig, Residual stress analysis using the hole-drilling method and geometry-specific calibration functions, J. Material pruefung/Materials Testing (2010).

DOI: 10.3139/120.110136

Google Scholar

[19] A. Ihnatov, J.S. Haddad, Ye. Koroviaka, O. Aziukovskyi, V. Rastsvietaiev, O. Dmytruk, Study of Rational Regime and Technological Parameters of the Hydromechanical Drilling Method, J. Archives of Mining Sciences 68(2) (2023) 285–299.

DOI: 10.24425/ams.2023.146180

Google Scholar

[20] B.T. Ratov, A.K. Sudakov, B.V. Fedorov, I.A. Ruslyakova-Kupriyanova, P.S. Sundetova, Improvement of the methodology for calculating the expected drilling speed with PDC chisels, J. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1 (2024) 26–31.

DOI: 10.33271/nvngu/2024-1/026

Google Scholar

[21] Y. Vynnykov, M. Kharchenko, S. Manhura, A. Aniskin, A. Manhura, Neural network analysis of safe life of the oil and gas industrial structures, J. Min. Miner. Depos. 18(1) (2024) 37-44.

DOI: 10.33271/mining18.01.037

Google Scholar

[22] R. Katsman, E. Aharonov, B.C. Haimson, Compaction bands induced by borehole drilling, J. Acta Geotechnica (2009).

DOI: 10.1007/s11440-009-0086-3

Google Scholar

[23] O. Vytyaz, O. Chernova, Y. Stavychnyi, R. Martyniuk, J. Ziaja, Increasing the reliability of oil and gas well fastening with polycomponent plugging systems, J. Min. Miner. Depos. 18(3) (2024) 82-93.

DOI: 10.33271/mining18.03.082

Google Scholar

[24] V. Bondarenko, I. Kovalevska, V. Krasnyk, V. Chernyak, O. Haidai, R. Sachko, I. Vivcharenko, Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations, J. Min. Miner. Depos. 18(1) (2024) 67-81.

DOI: 10.33271/mining18.01.067

Google Scholar

[25] H. Symanovych, I. Lisovytska, M. Odnovol, R. Ahaiev, S. Poimanov, Rationale and modeling of technology for complex bottom-hole zone de-stressing of gas-dynamically active rock mass, J. Min. Miner. Depos. 18(2) (2024) 83-92.

DOI: 10.33271/mining18.02.083

Google Scholar

[26] O. Pashchenko, B. Ratov, V. Khomenko, A. Gusmanova, E. Omirzakova, Methodology for optimizing drill bit performance, J. SGEM Conf. Proc. (2024).

DOI: 10.5593/sgem2024/1.1/s06.78

Google Scholar

[27] N. Schormair, K. Thuro, Fracture pattern of anisotropic rock by drilling or cutting using the PFC, J. Proceedings of the 1st Canada-US Rock Mechanics Symposium (2007).

DOI: 10.1201/noe0415444019-c65

Google Scholar

[28] B. Ratov, A. Pavlychenko, R. Kirin, O. Pashchenko, V. Khomenko, N. Tileuberdi, O. Kamyshatskyi, S. Sieriebriak, A. Seidaliyev, S. Muratova, Using Machine Learning to Model Mechanical Processes in Mining: Theory, Practice, and Legal Considerations, J. Engineered Science 33 (2025) 1419.

DOI: 10.30919/es1419

Google Scholar

[29] J. Schoop, M.M. Hasan, H. Zannoun, Physics-Informed and Data-Driven Prediction of Residual Stress in Three-Dimensional Machining, J. Experimental Mechanics (2022).

DOI: 10.1007/s11340-022-00880-4

Google Scholar

[30] M. Mnzool, A. Al-Mukhtar, A.J. Majeed, A. Arafat, E. Gomaa, Simulation and performance characteristics of rock with borehole using Visual Finite Element Analysis, J. Min. Miner. Depos. 18(3) (2024) 33-41.

DOI: 10.33271/mining18.03.033

Google Scholar

[31] L.E. Chiang, D.A. Elías, A 3D FEM methodology for simulating the impact in rock-drilling hammers, J. Int. J. of Rock Mechanics and Mining Sciences (2008).

DOI: 10.1016/j.ijrmms.2007.08.001

Google Scholar