[1]
Electric power and environmental protection. Functioning of the energy sector in the modern world. Information on http://energetika.in.ua/ua/books/book-5/part-1/section-2/2-8
Google Scholar
[2]
Energy: history, present, and future. Information on http://energetika.in.ua/ua/
Google Scholar
[3]
G.G. Pivnyak, V.I. Samusya, Yu.I. Oksen, Theory and practice of heat pump utilization of mine water heat, Coal of Ukraine. 3 (2017) 6-10.
Google Scholar
[4]
I. Sadovenko, O. Inkin, N. Dereviahina, Y. Kryplyvets, Actualization of prospects of thermal usage of groundwater of mines during liquidation, E3S Web of Conferences. 123, 01046 (2019) 1-9
DOI: 10.1051/e3sconf/201912301046
Google Scholar
[5]
D. Banks, A. Athresh, A. Al-Habaibeh, N. Burnside, Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom, Sustainable Water Resources Management. 5 (2019) 29-50
DOI: 10.1007/s40899-017-0094-7
Google Scholar
[6]
J.W. Lund, J.W. Toth, Direct Utilization of Geothermal Energy, Worldwide Review. Proc. World Geothermal Congress. (2020) 39 p.
Google Scholar
[7]
I. Sadovenko, O. Inkin, A. Zagrytsenko, Theoretical and geotechnological fundamentals for the development of natural and man-made resources of coal deposits, Mining of Mineral Deposits. 4 (2016), 1-10
DOI: 10.15407/mining10.04.001
Google Scholar
[8]
Redevelopment of European mining areas into sustainable communities by integrating supply and demand side based on low exergy principles. Information on https://cordis.europa.eu/project/id/38639
Google Scholar
[9]
D. Walls, D. Banks, A. Boyce, N. Burnside, A Review of the Performance of Minewater Heating and Cooling Systems, Energies. 14. 6215 (2021)
DOI: 10.3390/en14196215
Google Scholar
[10]
LANUV Nordrhein-Westfahlen: Potenzialstudie warmes Grubenwasser: Geothermie, Technischer Bericht 90, 2018, Recklinghausen: 154 pp. (in German). Information on https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/LANUV-Fachbericht_90_web.pdf
Google Scholar
[11]
D. Rudakov, S. Westermann, Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany, Mining of Mineral Deposits. 15(3) (2021) 22-30
DOI: 10.33271/mining15.03.022
Google Scholar
[12]
F. Hahn, R. Ignacy, G. Bussmann, F. Jagert, R. Bracke, T. Seidel, Reutilization of mine water as a heat storage medium in abandoned mines; 11th ICARD | IMWA | WISA MWD 2018 Conference – Risk to Opportunity Mine Water (Vol II), Pretoria, South Africa (Tshwane University of Technology). (2018) 1057-1063.
Google Scholar
[13]
D. Walls, D. Banks, A. Boyce, N. Burnside, A review of the performance of minewater heating and cooling systems, Energies. 14, 6215 (2021)
DOI: 10.3390/en14196215
Google Scholar
[14]
Assessment of environmental damage and priorities for environmental restoration in eastern Ukraine, VAITE, Kyiv, 2017. Information on https://www.osce.org/uk/project-coordinator-in-ukraine/362581
Google Scholar
[15]
C. Loredo, N. Roqueñí, A. Ordóñez, Modelling flow and heat transfer in flooded mines for geothermal energy use: A review, Int J of Coal Geology. 164 (2016) 115-122
DOI: 10.1016/j.coal.2016.04.013
Google Scholar
[16]
J. Busby, R. Terrington, Assessment of the resource base for engineered geothermal systems in Great Britain, Geothermal Energy. 5:7 (2017)
DOI: 10.1186/s40517-017-0066-z
Google Scholar
[17]
Final Technical Report, A demonstration system for capturing geothermal energy from mine waters beneath Butte, Montana. (2020). DOE Award Number: 10EE0002821.
DOI: 10.2172/1206629
Google Scholar
[18]
Extraction of geothermal energy from a mine shaft located in the hard coal mining district of Aachen, Germany. Sustainable Heating. April 9, 2019 in Brussels. Ingenieurbüro Heitfeld-Schetelig GmbH, Energeticon, D. Information on: https://ec.europa.eu/energy/sites/ener/files/ documents/8.5_schetelig_sustainable_heating.pdf.
Google Scholar
[19]
F. Bockelmann, M. Fisch, It works¾long-term performance measurement and optimization of six ground source heat pump systems in Germany, Energies. 12, 4691 (2019)
DOI: 10.3390/en12244691
Google Scholar
[20]
H. Liu, Y. Zhang, S. Javed, Long-term performance measurement and analysis of a small-scale ground source heat pump system, Energies. 13 (17), 4527 (2020)
DOI: 10.3390/en13174527
Google Scholar
[21]
A. Matas-Escamilla, R. Álvarez, F. García-Carro, L. Álvarez-Alonso, P. Cienfuegos, J. Menéndez, A. Ordóñez, Mine water as a source of energy: an application in a coalfield in Laciana Valley (León, NW Spain), Clean Techn Environ Policy. 25 (2023) 2747-2760
DOI: 10.1007/s10098-023-02526-y
Google Scholar
[22]
H. Wang, Y. Xu, L. Yuan, Y. Sun, Y. Cai, Analysis of geothermal heat recovery from abandoned coal mine water for clean heating and cooling: A case from Shandong, China, Renewable Energy. 228 (2024), 120659
DOI: 10.1016/j.renene.2024.120659
Google Scholar
[23]
D. Rudakov, O. Inkin, N. Dereviahina, V. Sotskov, Effectiveness evaluation for geothermal heat recovery in closed mines of Donbas, E3S Web of Conferences. 201, 01008 (2020)
DOI: 10.1051/e3sconf/202020101008
Google Scholar
[24]
D. Rudakov, O. Inkin, S. Wohnlich, R. Schiffer, Assessment of performance and fossil fuel saving effect for a potential mine-water-based geothermal system in the Ruhr coal-mining area, IOP Conf. Ser.: Earth Environ. Sci. 1457, 012001 (2025)
DOI: 10.1088/1755-1315/1457/1/012001
Google Scholar
[25]
O.A. Ulytskyi, V.M. Yermakov, O.V. Lunyova, K.E. Boyko, On the issue of assessing the forecast of changes in hydrogeological conditions of the techno-ecosystem of the Selydivskaya group of mines, Ecological Safety and Environmental Management. 32 (4) (2019) 32-42.
DOI: 10.32347/2411-4049.2019.4.32-42
Google Scholar
[26]
E.O. Yakovlev, O.V. Pirikov, E.S. Anpilova, S.M. Chumachenko, Assessment and forecasting of changes in the ecological state of the underground and surface hydrosphere of Donbas at the post-mining stage, Mineral Resources of Ukraine. 1 (2022) 43-51.
Google Scholar
[27]
Mineralienatlas – Fossilienatlas. Information on: https://www.mineralienatlas.de
Google Scholar
[28]
V. Gordienko, L. Gordienko, O. Zavgorodnyaya, Thermal field of the Donbas, Geophysical Journal. 37 (6) (2015) 3-23
DOI: 10.24028/gzh.0203-3100.v37i6.2015.111169
Google Scholar
[29]
Geologischer Dienst NRW Report 2018/1: Krefeld. 35 p. Information on https://www.gd.nrw.de/zip/gd_gdreport_1801s.pdf
Google Scholar
[30]
Y. Sun, X. Xiong, G. Chen, Z. Xu, L. Zhang, X. Zhao, D. Rudakov, Numerical modeling of coupled hydrodynamic-chemical-biodegradation processes in coal mine water quality formation and evolution, J of China Coal Society. 49(2) (2024) 941-957
Google Scholar