Low Temperature MOCVD-Processed Alumina Coatings

Article Preview

Abstract:

We first present a Review about the preparation of alumina as thin films by the technique of MOCVD at low temperature (550°C and below). Then we present our results about thin films prepared by the low pressure MOCVD technique, using aluminium tri-isopropoxide as a source, and characterized by elemental analysis (EMPA, EDS, ERDA, RBS), FTIR, XRD and TGA. The films were grown in a horizontal, hot-wall reactor, with N2 as a carrier gas either pure or added with water vapour. The deposition temperature was varied in the range 350-550°C. The films are amorphous. Those prepared at 350°C without water added in the gas phase have a formula close to AlOOH. Those deposited above 415°C are made of pure alumina Al2O3. When water is added in the gas phase, the films are pure alumina whatever the deposition temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1184-1193

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Samélor, M.M. Sovar, A. Stefanescu, A.N. Gleizes, P. Alphonse and C. Vahlas: Fifteenth European Conference on Chemical Vapor Deposition (EUROCVD-15), (A. Devi, R. Fischer, H. Parala, M. Allendorf and M. Hitchmann, editors, The Electrochemical Society, Inc., Pennington, NJ, USA 2005) Vol. PV 2005-09, p.1051.

Google Scholar

[2] J.A. Aboaf: J. Electrochem. Soc. Vol. 114 (1967), p.948.

Google Scholar

[3] N.Y. Turova, V.A. Kozunov, A.I. Yanovskii, N.G. Bokii, Y.T. Struchkov and B.L. Tarnopol'skii: J. Inorg. Nucl. Chem. Vol. 41 (1979), p.5.

Google Scholar

[4] W. Fieggen, H. Gerding and N.M.M. Nibbering: Rec. Trav. Chim. Vol. 87 (1968), p.377.

Google Scholar

[5] V.J. Shiner, D. Whittaker and V.P. Fernandez: J. Am. Chem. Soc. Vol. 85 (1963), p.2318.

Google Scholar

[6] D.C. Bradley: Metal Alkoxides (Interscience Publishers, Inc., New York, N.Y., 1959).

Google Scholar

[7] A.C. Jones, D.J. Houlton, S.A. Rushworth and G. Critchlow: J. Phys. IV Vol. 5, (1995), p. C5- 557.

Google Scholar

[8] T. Maruyama and T. Nakai: Appl. Phys. Lett. Vol. 58 (1991), p. (2079).

Google Scholar

[9] V.A.C. Haanappel, H.D. van Corbach, T. Fransen and P. J. Gellings: Thin Solid Films Vol. 230 (1993), p.138.

DOI: 10.1016/0040-6090(93)90506-k

Google Scholar

[10] V.A.C. Haanappel, H.D. van Corbach, T. Fransen and P.J. Gellings: Surf. Coat. Technol. Vol. 64 (1994), p.183.

Google Scholar

[11] V.A.C. Haanappel, J.B. Rem, H.D. van Corbach, T. Fransen, and P.J. Gellings: Surf. Coat. Technol. Vol. 72 (1995), p.1.

Google Scholar

[12] V.A.C. Haanappel, D. v. d. Vendel, H D. van Corbach, T. Fransen, and P.J. Gellings: Thin Solid Films Vol. 256 (1995), p.8.

DOI: 10.1016/0040-6090(95)80026-3

Google Scholar

[13] D. -H. Kuo, B. -Y. Cheung and R. -J. Wu: Thin Solid Films Vol. 398-399 (2001), p.35.

Google Scholar

[14] J.H. Kim, G.J. Choi, J.K. Lee, S.J. Sim, Y.D. Kim and Y.S. Cho: J. Mater. Sci. Vol. 33 (1998), p.1253.

Google Scholar

[15] Q. B.A. Ajayi, M.S. Akanni, H.D. Burrow, J.N. Lambi, O. Osasona and B.P. Podor: Thin Solid Films Vol. 138 (1986), p.91.

DOI: 10.1016/0040-6090(86)90219-1

Google Scholar

[16] Q. B.A. Ajayi, M.S. Akanni, J.N. Lambi, C. Jeynes and J.F. Watts: Thin Solid Films Vol. 185 (1990), p.123.

DOI: 10.1016/0040-6090(90)90012-3

Google Scholar

[17] T. Maruyama and S. Arai: Appl. Phys. Lett. Vol. 60 (1992), p.322.

Google Scholar

[18] M. Pulver, W. Nemetz and G. Wahl: Surf. Coat. Technol. Vol. 125 (2000), p.400.

Google Scholar

[19] M.P. Singh and S.A. Shivashankar: Surf. Coat. Technol. Vol. 161 (2002), p.135.

Google Scholar

[20] Q. -Y. Shao, A. -D. Li, H. -Q. Ling, D. Wu, Y. Wang, Y. Feng, S. -Z. Yang, Z. -G. Liu, M. Wang and N. -B. Ming: Microelect. Eng. Vol. 66 (2003), p.842.

Google Scholar

[21] S.K. Pradhan, P.J. Reucroft and Y. Ko: Surf. Coat. Technol. Vol. 176 (2004), p.382.

Google Scholar

[22] J.C. Nable, S.L. Suib and F.S. Galasso: Surf. Coat. Technol. Vol. 186 (2004), p.423.

Google Scholar

[23] G.A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia and G. Rossetto: Chem. Vap. Deposition Vol. 7 (2001), p.69.

DOI: 10.1002/1521-3862(200103)7:2<69::aid-cvde69>3.0.co;2-q

Google Scholar

[24] W. Koh, S. -J. Ku and Y. Kim: Thin Solid Films Vol. 304 (1997), p.222.

Google Scholar

[25] D. Barreca, G.A. Battiston, R. Gerbasi and E. Tondello: J. Mater. Chem. Vol. 10 (2000), p.2127.

Google Scholar

[26] M. Natali, G. Carta, V. Rigato, G. Rossetto, G. Salmaso and P. Zanella: Electrochim. Acta Vol. 50 (2005), p.4615.

Google Scholar

[27] F. Guidi, G. Moretti, G. Carta, M. Natali, G. Rossetto, P. Zanella, G. Salmaso and V. Rigato: Electrochim. Acta Vol. 50 (2005), p.4609.

DOI: 10.1016/j.electacta.2004.10.091

Google Scholar

[28] M.T. Duffy, J.E. Carnes and D. Richman: Metall. Trans. Vol. 2 (1971), p.667.

Google Scholar

[29] M.T. Duffy and W. Kern: RCA Rev. Vol. 31: 754 (1970).

Google Scholar

[30] M.T. Duffy and A.G. Revesz: J. Electrochem. Soc. Vol. 117 (1970), p.372.

Google Scholar

[31] M. Okamura and T. Kobayashi: Japan. J. Appl. Phys. Vol. 19 (1980), p.2151.

Google Scholar

[32] J. Fournier, W. DeSisto, R. Brusasco, M. Sosnowski, R. Kershaw, J. Baglio, K. Dwight and A. Wold: Mat. Res. Bull. Vol. 23 (1988), p.31.

DOI: 10.1016/0025-5408(88)90221-8

Google Scholar

[33] K. Tanaka, H. Takahashi, S. Kuniyoshi and H. Ohki: Solid-State Elect. Vol. 23 (1980), p.1093.

Google Scholar

[34] T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda and Y. Hirota: J. Appl. Phys. Vol. 52 (1981), p.6434.

Google Scholar

[35] T. Ito and Y. Sakai: Solid-State Elect. Vol. 17 (1974), p.751.

Google Scholar

[36] J. Saraie, J. Kwon and Y. Yodogawa: J. Electrochem. Soc. Vol. 132 (1985), p.890.

Google Scholar

[37] D.C. Cameron, L.D. Irving, G.R. Jones and J. Woodward: Thin Solid Films Vol. 91 (1982), p.339.

Google Scholar

[38] C. Dhanavantri and R.N. Karekar: Thin Solid Films Vol. 169 (1989), p.271.

Google Scholar

[39] C. Dhanavantri, R.N. Karekar and V. J. Rao: Thin Solid Films Vol. 127 (1985), p.85.

Google Scholar

[40] M. Okamura and T. Kobayashi: Japan. J. Appl. Phys. Vol. 19 (1980), p.2143.

Google Scholar

[41] R.W.J. Morssinkhof: Ph.D. Thesis (University of Twente, Netherlands, 1991).

Google Scholar

[42] R.W.J. Morssinkhof, T. Fransen, M.M.D. Heusinkveld and P. J. Gellings: Mater. Sci. Eng. A Vol. 121 (1989), p.449.

Google Scholar

[43] R.W.J. Morssinkhof, T. Fransen, M. M. D. Heusinkveld and P. J. Gellings: Mat. Res. Soc. Symp. Proc. Vol. 168 (1990), p.125.

Google Scholar

[44] V.A.C. Haanappel, H.D. van Corbach, R. Hofman, R. W. J. Morssinkhoff, T. Fransen and P. J. Gellings: High Temp. Mater. Proc. Vol. 15 (1996), p.245.

Google Scholar

[45] R. Hofman, R.W.J. Morssinkhof, T. Fransen, J.G.F. Westheim and P.J. Gellings: Mater. Manuf. Processes Vol. 8 (1993), p.315.

Google Scholar

[46] N. Yoshikawa, S. Takamura, S. Taniguchi and A. Kikuchi: Trans. Mater. Res. Soc. Jpn. Vol. 24 (1999), p.151.

Google Scholar

[47] G.P. Shulman, M. Trusty and J.H. Vickers: J. Org. Chem. Vol. 28 (1963), p.907.

Google Scholar

[48] D.H. Lee, D.J. Choi and S.H. Hyun: J. Mater. Sci. Lett. Vol. 15 (1996), p.96.

Google Scholar

[49] J. Saraie, K. Ono and S. Takeuchi: J. Electrochem. Soc. Vol. 136 (1989), p.3139.

Google Scholar

[50] T. Go and K. Sugimoto: J. Japan Inst. Metals Vol. 56 (1992), p.184.

Google Scholar

[51] S.S. Yom, W.N. Kang, Y.S. Yoon, J.I. Lee, D.J. Choi, T.W. Kim, K.Y. Seo, P.H. Hur and C.Y. Kim: Thin Solid Films Vol. 213 (1992), p.72.

DOI: 10.1016/0040-6090(92)90476-r

Google Scholar

[52] N. Hara, S. Nagata, N. Akao and K. Sugimoto: J. Electrochem. Soc. Vol. 146 (1999), p.510.

Google Scholar

[53] R. Xu: J. Mater. Res. Vol. 10 (1995), p.2536.

Google Scholar

[54] M.T. Tsai and H. C. Shih: J. Mater. Sci. Lett. Vol. 12 (1993), p.1025.

Google Scholar

[55] S. Ram, T.B. Singh and L.C. Pathak: Phys. Stat. Sol. (a) Vol. 165 (1998), p.151.

Google Scholar

[56] J.A. Wang, X. Bokhimi, A. Morales, O. Novaro, T. Lopez and R. Gomez: J. Phys. Chem. B Vol. 103 (1999), p.299.

Google Scholar

[57] L. Pach, J. Majling and S. Komarneni: J. Sol-Gel Sci. Technol. Vol. 18 (2000), p.99.

Google Scholar

[58] M. Nguefack, A.F. Popa, S. Rossignol and C. Kappenstein: Phys. Chem. Chem. Phys. Vol. 5 (2003), p.4279.

Google Scholar

[59] P. Alphonse and M. Courty: Thermochim. Acta Vol. 425 (2005), p.75.

Google Scholar

[60] J. Peric, R. Krstulovic, T. Feric and M. Vucak: Travaux Vol. 20-21 (1991), p.35.

Google Scholar

[61] T. Tsukada, H. Segawa, A. Yasumori and K. Okada: J. Mater. Chem. Vol. 9 (1999), p.549.

Google Scholar

[62] X. Bokhimi, J.A. Toledo-Antonio, M.L. Guzman-Castillo, B. Mar-Mar, F. Hernandez-Beltran and J. Navarrete: J. Solid State Chem. Vol. 161 (2001), p.319.

DOI: 10.1006/jssc.2001.9320

Google Scholar

[63] J.T. Kloprogge, H.D. Ruan, and R.L. Frost: J. Mater. Sci. Vol. 37 (2002), p.1121.

Google Scholar

[64] G. Paglia, C.E. Buckley, A.L. Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter and J.V. Hanna: Chem. Mater. Vol. 16 (2004), p.220.

Google Scholar

[65] C. Colombo and A. Violante: Clays Clay Miner. Vol. 44 (1996), p.1532.

Google Scholar