Structure and Electromechanical Properties of Quenched PMN-PT Single Crystal Thin Films

Article Preview

Abstract:

Thin films of single c-domain/single crystal (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), x≅0.33 near a morphotropic boundary (MPB) composition, were heteroepitaxially grown on (110)SRO/(001)Pt/(001)MgO substrates by magnetron sputtering. The heteroepitaxial growth was achieved by rf-magneron sputtering at the substrate temperature of 600oC. After sputtering deposition, the sputtered films were quenched from 600oC to room temperature in atmospheric air. The quenching enhanced the heteroepitaxial growth of the stress reduced single c-domain/single crystal PMN-PT thin films. Their electromechanical coupling factor kt measured by a resonance spectrum method was 45% at resonant frequency of 1.3GHz with phase velocity of 5500 to 6000m/s for the film thickness of 2.3μm. The d33 and d31 were 194pC/N and –104pC/N, respectively. The observed kt , d33 ,and d31were almost the same to the bulk single crystal values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1212-1217

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Uchino: Solid State Ionics Vol. 108 (1998) p.43.

Google Scholar

[2] G.A. Rossetti, Jr., L.E. Cross, and K. Kushida: Appl. Phys. Lett. Vol. 59 (1991) p.2524.

Google Scholar

[3] J. H. Park, F. Xu, and S. Trolier-McKinstry: J. Appl. Phys. Vol. 89 (2001) p.568.

Google Scholar

[4] V. Nagarajan, C.S. Ganpule, B. Nagaraj, S. Aggarwal, S.P. Alpay, A.L. Roytburd, E.D. Williams, and R. Ramesh: Appl. Phys. Lett. Vol. 26 (1999) p.4183.

DOI: 10.1063/1.125576

Google Scholar

[5] K. Wasa, Y. Yamada, M. Shimoda, S.H. Seo, D.Y. Noh, H. Okino, and T. Yamamoto: Ferroelectric Properties of PMNT Thin Films Epitaxially Grown on La-doped SrTiO3 (Proc. of 13th IEEE International Symposium on Applications of Ferroelectrics, Nara, 2002) p.179.

DOI: 10.1109/isaf.2002.1195899

Google Scholar

[6] K. Wasa, Y. Yamada, M. Shimoda, S.H. Seo, D.Y. Noh, H. Okino, and T. Yamamoto: Proceedings of 13 th IEEE International Symposium on Applications of Ferroelectrics (IEEE, Nara, 2002) p.179.

Google Scholar

[7] K. Wasa, S. Ito, K. Nakamura, T. Matsunaga, I. Kanno, T. Suzuki, H. Okino, T. Yamamoto, S.H. Seo, and D.Y. Noh: Appl. Phys. Lett. Vol. 88 (2006) p.122903.

DOI: 10.1063/1.2188588

Google Scholar

[8] R. Zhang and W. Cao: Appl. Phys. Lett. Vol. 85(2004)p.6380.

Google Scholar

[9] R. Zhang , B. Jiang, and W. Cao: Appl. Phys. Lett. Vol. 90 (2001) p.3471.

Google Scholar

[10] S. Ito, K. Nakamura, and K. Ishikawa, Proceedings of 2005 IEEE International Ultrasonics Symposium (IEEE, Rotterdam, 2005) P1L-7.

Google Scholar

[11] I. Kanno, H. Kotera, and K. Wasa: Sensor and Actuators Vol. A107(2003)p.68.

Google Scholar

[12] J.,H. Park, F. Xu, and S. Trolier-McKinstry: J. Appl. Phys. Vol. 89 (2001) p.568.

Google Scholar

[13] K Lefki and G. J.M. Dormans: J. Appl. Phys. Vol. 76 (1994)p.1764.

Google Scholar

[14] S.L. Swaltz and T.R. Shrout: Mater. Res. Bull. Vol. 17(1982)p.1245.

Google Scholar

[15] O. Noblanc, P. Gaucher, and G. Calvarin: J. Appl. Phys. Vol. 79(1996)p.4291.

Google Scholar

[16] S.H. Seo, PhD Thesis (Kwangjyu Institute of Science and Technology, Kwangjyu, 2004) p.88.

Google Scholar

[17] S.H. Seo, H.C. Kang, Y. Yamada, K. Wasa, and D. Y. Noh: Appl. Phys. Lett. Vol. 84 (2004) p.3133.

Google Scholar