Hydrothermal Synthesis of Advanced Ceramic Powders

Article Preview

Abstract:

This paper briefly reviews hydrothermal synthesis of ceramic powders and shows how understanding the underlying physico-chemical processes occurring in the aqueous solution can be used for engineering hydrothermal crystallization processes. Our overview covers the current status of hydrothermal technology for inorganic powders with respect to types of materials prepared, ability to control the process, and use in commercial manufacturing. General discussion is supported with specific examples derived from our own research (hydroxyapatite, PZT, 􀄮-Al2O3, ZnO, carbon nanotubes). Hydrothermal crystallization processes afford excellent control of morphology (e.g., spherical, cubic, fibrous, and plate-like) size (from a couple of nanometers to tens of microns), and degree of agglomeration. These characteristics can be controlled in wide ranges using thermodynamic variables, such as reaction temperature, types and concentrations of the reactants, in addition to non-thermodynamic (kinetic) variables, such as stirring speed. Moreover, the chemical composition of the powders can be easily controlled from the perspective of stoichiometry and formation of solid solutions. Finally, hydrothermal technology affords the ability to achieve cost effective scale-up and commercial production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-193

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Byrappa and M. Yoshimura: Handbook of Hydrothermal Technology (Noyes Publications/William Andrew Publishing LLC, U.S.A. 2001).

Google Scholar

[2] R. Roy: J. Solid State Chem. Vol. 111 (1994), p.11.

Google Scholar

[3] S. Sômiya: Hydrothermal Reactions for Materials Science and Engineering. An Overview of Research in Japan (Elsevier Science Publishers Ltd., U.K. 1989).

Google Scholar

[4] M. Yoshimura, W. L. Suchanek, and K. Byrappa: MRS Bull. Vol. 25 (2000), p.17.

Google Scholar

[5] B. Gersten, M. Lencka and R. E. Riman: Chem. Mater. Vol. 14 (2002), p. (1950).

Google Scholar

[6] R. E. Riman: in High Performance Ceramics: Surface Chemistry in Processing Technology, edited by R. Pugh and L. Bergström (Marcel-Dekker, U.S.A. 1993), p.29.

Google Scholar

[7] W. J. Dawson: Ceram. Bull. Vol. 67 (1988), p.1673.

Google Scholar

[8] G. C. Ulmer and H. L. Barnes: Hydrothermal Experimental Techniques (Wiley-Interscience, U.S.A. 1987).

Google Scholar

[9] I. Sunagawa, K. Tsukamoto, K. Maiwa, and K. Onuma: Prog. Crystal Growth and Charact. Vol. 30 (1995), p.153.

Google Scholar

[10] R. E. Riman, W. L. Suchanek, and M. M. Lencka: Ann. Chim. Sci. Mat. Vol. 27 (2002) p.15.

Google Scholar

[11] W. L. Suchanek, M. M. Lencka, and R. E. Riman: in Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam, and Hydrothermal Solutions, edited by D. A. Palmer, R. Fernández-Prini, and A. H. Harvey (Elsevier Ltd. 2004), p.717.

DOI: 10.1016/b978-012544461-3/50019-3

Google Scholar

[12] W. L. Suchanek, M.M. Lencka, L. E. McCandlish, R. L. Pfeffer, M. Oledzka, K. MikulkaBolen, G. A. Rossetti, Jr. and R. E. Riman: Crystal Growth & Design Vol. 5 (2005), p.1715.

DOI: 10.1021/cg049710x

Google Scholar

[13] S. -B. Cho, M. Oledzka, and R. Riman: J. Crystal Growth Vol. 226 (2001), p.313.

Google Scholar

[14] R. E. Riman, W. L. Suchanek, K. Byrappa, C. S. Oakes, C. -W. Chen, and P. Shuk: Solid State Ionics Vol. 151 (2002), p.393.

Google Scholar

[15] W. Suchanek, H. Suda, M. Yashima, M. Kakihana, and M. Yoshimura: J. Mater. Res. Vol. 10 (1995), p.521.

Google Scholar

[16] W. L. Suchanek, P. Shuk, K. Byrappa, R. E. Riman, K. S. TenHuisen, and V. F. Janas: Biomaterials Vol. 23 (2002), p.699.

DOI: 10.1016/s0142-9612(01)00158-2

Google Scholar

[17] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, K. S. TenHuisen, and V. F. Janas: Biomaterials Vol. 25 (2004), p.4647.

DOI: 10.1016/j.biomaterials.2003.12.008

Google Scholar

[18] W. L. Suchanek, J. Libera, Y. Gogotsi, and M. Yoshimura: J. Solid State Chem. Vol. 160 (2001), p.184.

Google Scholar