Preparation and Characterization of Copper-Doped Tin Oxide Nanopowder via Hydrothermal Route

Article Preview

Abstract:

Copper-doped tin oxide nanopowder has been synthesized via the hydrothermal route, in which pure metallic Sn, diluted nitric acid solution and Cu(NO3)2 are used as the starting materials. The hydrothermal treatment at about 200°C for 10 h results in rutile crystalline SnO2 particles with a narrow size distribution typically in the range of 3~6 nm. The average crystallite size of 5 wt% CuO-doped SnO2 particles remains smaller than 12.5 nm even after annealing at 800°C. The evaluation of the sensitive properties of the synthesized powder with various amount of CuO doping is conducted on the thick-film samples fabricated by screen-printing method. The high sensitivity toward H2S as shown by the sensor test results show the possibility of using this material for gas sensor fabrication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-204

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti and M. Zha: Sens. Actuators B Vol. 111-112 (2005), p.2.

DOI: 10.1016/j.snb.2005.06.031

Google Scholar

[2] S.V. Manorama, C.V.G. Reddy and V.J. Rao: Nanostructured Mater. Vol. 11 (1999), p.643.

Google Scholar

[3] N. Barsan and M.S. Berberich: Fresenius J. Anal. Chem. Vol. 365 (1999), p.287.

Google Scholar

[4] D.E. Williams: Sens. Actuators B Vol. 57 (1999), p.1.

Google Scholar

[5] O.K. Tan, W. Cao, Y. Hu and W. Zhu: Ceram. Intl. Vol. 30 (2004), p.1127.

Google Scholar

[6] G. Blaser, Th. Ruhl, C. Diehl, M. Ukich and D. Kohl: Physica A Vol. 266 (1999), p.218.

Google Scholar

[7] S. Shukla and S. Seal: J. Nanosci. Nanotech. Vol. 4 (2004), p.141.

Google Scholar

[8] R.S. Niranjan, Y.K. Hwang, D.K. Kim, S.H. Jhung, J.S. Chang and I.S. Mulla: Mater. Chem. Phys. Vol. 92 (2005), p.384.

Google Scholar

[9] S. Shukla, L. Ludwig, C. Parrish and S. Seal: Sens. Actuators B Vol. 104 (2005), p.223.

Google Scholar

[10] C.H. Han, S.D. Han, I. Singh and T. Toupance: Sens. Actuators B Vol. 109 (2005), p.264.

Google Scholar

[11] S.P. Gong, H. Liu and D.X. Zhou: J. Inorgan. Mater. Vol. 21 (2006), p.521.

Google Scholar

[12] J.H. Luo and P.A. Maggard: Adv. Mater. Vol. 18 (2006), p.514.

Google Scholar

[13] H.L. Zhu, D.R. Yang, G.X. Yu, H. Zhang and K.H. Yao: Nanotech. Vol. 17 (2006), p.2386.

Google Scholar

[14] S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai and S.H. Kim: Langmuir Vol. 20 (2004), p, 6476.

Google Scholar

[15] C.Y. Wang, Y. Hu, Y.T. Qian and G.W. Zhao: Nanostructured Mater. Vol. 7 (1996), p.421.

Google Scholar

[16] J.R. Zhang and L. Gao: Acta Chimica Sinica Vol. 61 (2003), p. (1965).

Google Scholar

[17] T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe: Chem. Lett. Vol. 232 (1991), p.575.

Google Scholar

[18] J.D. Brazzle, I. Papautsky and A.B. Frazier: Proc. SPIE, Microfluidic Devices Syst. Vol. 3515 (1998), p.116.

Google Scholar

[19] R.B. Vasiliey, M.N. Rumyantseva and S.E. Podguzova: Mater. Sci. Eng. Vol. 57 (1999), p.241.

Google Scholar

[20] G.J. Fang, Z.L. Liu, Y.F. Hu and K.L. Yao: J. Inorgan. Mater. Vol. 11 (1996), p.537.

Google Scholar

[21] J. Tamaki, T. Maekawa, N. Miura and N. Yamazoe: Sens. Actuators B Vol. 9 (1992), p.197.

Google Scholar