Novel Synthetic Clays for Cation Exchange

Article Preview

Abstract:

This paper reviews synthesis, characterization and cation exchange properties of a novel swelleing mica "Na-4-mica" and their synthetic analogues with a high layer charge denisty. Na-4-mica (Na4Mg6Al4Si4O20F4) of a synthetic brittle mica has a very high Al(III) content and but exhibits unusual swelling behavior and selective cation exchange properties potentially useful in hazardous cation separations from solutions. Although normal brittle micas do not swell in water at all, this synthetic mica can readily become hydrated upon contact with water or even in moist air. This mica has a theoretical cation-exchange capacity of 468 milli-equivalents per 100 g on an anhydrous basis. The present authors found a simple and cost-effective preparation process of micro- or nano-crystallites of this mica from naturally occurring clay kaolinite. The fine mica is a selective exchanger for Sr, Ba, Ra, Pb, Cu, or Zn. The modified micas, such as "Na-3-mica" and "Na-2-mica" were also synthesized by the similar syntehtic processes. Na-3-mica improved the cation exchange kinetics and capacity for Sr. These micas also exhibited extremely low cation leachability once dehydrated at room temperature or moderate temperatures, and, hence, are expected to be useful for radioactive strontium or radium removal followed by its immobilization for safe disposal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-217

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Roy, ed.: Radioactive Waste Disposal Vol. 1: The Waste Package (Pergamon Press, New York USA 1982).

Google Scholar

[2] R. E. Grim: Clay Mineralogy, 2nd ed. (McGraw-Hill, New York, USA 1968).

Google Scholar

[3] Y. Morikawa, T. Goto, Y. Moro-oka and T. Kkawa: Chem. Lett. (1982, p.1667.

Google Scholar

[4] M. Gregorikiewitz and J. A. Rausell-Colom: Am. Mineral. Vol. 72 (1987), p.515.

Google Scholar

[5] W. J. Paulus, S. Komarneni and R. Roy: Nature (London) Vol. 357 (1992), p.571.

Google Scholar

[6] S. Komarneni and R. Roy: New Developments in Ion Exchanger, Proc. Int. Conf. on Ion Exchange, p.51 (Kodansha. Tokyo, Japan 1991).

Google Scholar

[7] S. Komarneni, R. Pidugu and J. E. Amonette: J. Mater. Chem. Vol. 8(1) (1998), p.205.

Google Scholar

[8] T. Kodama and S. Komarneni: Sep. Sci. Technol. Vol. 35(8) (2000), p.1133.

Google Scholar

[9] T. Kodama, S. Komarneni, W. Hoffbauer, H. Schneider: J. Mater. Chem. Vol. 10 (2000), p.1649.

Google Scholar

[10] T. Kodama, Y. Harada, M. Ueda, K-I. Shimizu, K. Shuto, S. Komarneni, W. Hoffbauer and H. Schneider: J. Mater. Chem. Vol. 11 (2001), p.1222.

DOI: 10.1039/b009418h

Google Scholar

[11] T. Kodama, Y. Harada, M. Ueda, K-I. Shimizu, K. Shuto and S. Komarneni: Langmuir Vol 17 (2001), p.4881.

Google Scholar

[12] T. Kodama, T. Higuchi, T. Shimizu, K-I. Shimizu, S. Komarneni, W. Hoffbauer and H. Schneider: J. Mater. Chem. Vol. 11 (2001), p. (2072).

DOI: 10.1039/b101186n

Google Scholar

[13] T. Kodama, S. Nagai, K. Hasegawa, K-I. Shimizu and S. Komarneni: Sep. Sci. Technol. Vol. 37(8) (2002), p. (1927).

Google Scholar

[14] T. Kodama and S. Komarneni: J. Mater. Chem. Vol. 9 (1999), p.2475.

Google Scholar

[15] K. R. Frankin and E. Lee: J. Mater. Chem. Vol. 6(1) (1996), p.109.

Google Scholar

[16] T. Kodama, M. Ueda, Y. Nakamuro, K-I. Shimizu and S. Komarneni: Langmuir Vol. 20 (2004), p.4920.

Google Scholar

[17] J. Keilland: J. Soc. Chem. Ind., London, Trans. Comun. Vol. 54 (1935) , p. 232T.

Google Scholar

[18] F. Helfferich: Ion Exchange (Daver, New York, USA 1995).

Google Scholar

[19] S. Guggenheim: Review of Mineralogy, Vol. 13 Micas (Mineralogical Society of American-Bookcrafters, Inc., Chelsea, Michigan, USA 1984).

Google Scholar

[20] S. Komarneni, N. Kozai and W. Paulus: Nature Vol. 410 (2001), p.771.

Google Scholar

[21] T. Kodama and S. Komarneni: J. Mater. Chem. Vol. 9 (1999), p.533.

Google Scholar

[22] T. Kodama and S. Komarneni: Sep. Sci. Technol. Vol. 34(12) (1999), p.2275.

Google Scholar

[23] S. Komarneni, T. Kodama, W. Paulus: J. Mater. Res. Vol. 15(6) (2000), p.1254.

Google Scholar

[24] T. Kodama, K. Hasegawa, K-I. Shimizu and S. Komarneni: Sep. Sci. Technol. Vol. 38(3) (2003), p.679.

Google Scholar

[25] K-I. Shimizu, K. Hasegawa, Y. Nakamuro, T. Kodama and S. Komarneni: J. Mater. Chem. Vol. 14 (2004), p.1031.

Google Scholar