Morphology of Zirconia Nanopowders Crystallised under Hydrothermal Conditions

Article Preview

Abstract:

Zirconia nanopowders stabilised with 6 mol% calcium oxide were crystallised under hydrothermal conditions. The effect of pH on chemical composition, phase composition and morphology of the resultant nanopowders was studied. Behaviour of the nanopowders during uniaxial pressing and pressureless sintering was characterized. It was found that the solution pH higher than 10 is required to retain CaO totally in the nanopowder during hydrothermal crystallisation. Oval nanocrystallites of tetragonal symmetry were obtained as the main phase. An increase of the solution pH increased both the content and aspect ratio of needle-shaped crystallites of monoclinic symmetry being the secondary phase. This improved compressibility of the nanopowders but deteriorated their sinterability and the phase composition of the resultant polycrystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Pyda and K. Haberko, Ceramics Int. Vol. 13 (1987) p.113.

Google Scholar

[2] R. Pampuch, W. Pyda and K. Haberko, Ceramics Int. Vol. 14 (1988), pp.245-249.

Google Scholar

[3] W. G. Tchukhlancev and J. M. Galkin, Zh. Neorg. Khim. Vol. 14 (1969) p.311.

Google Scholar

[4] K. Haberko and W. Pyda, in Science and Technology of Zirconia II, Vol. 12, N. Claussen, M. Rühle and A. H. Heuer Eds, (The American Ceramic Society, Columbus, Ohio, 1984) p.774.

Google Scholar

[5] E. P. Stambaugh, J. H. Adair, W. Sekercioglu and R. R. Wills, US Patent no. 4, 619, 817 (1986).

Google Scholar

[6] W. Pyda, K. Haberko and M. M. Bućko, J. Am. Ceram. Soc. Vol. 74 (1991), p.2622.

Google Scholar

[7] L. Grahl-Madsen, R. E. Riman, in Ceramic Powder Science III, G. L. Messing, Shin-ichi Hirano and H. Hausner Eds, (The American Ceramic Society, Inc. Westerville, Ohio, 1990), p.33.

Google Scholar

[8] Cheng Hu-min, Wu Li-jun, Ma Ji-ming, Zhang Zhi-ying and Qi Li-min, J. Eur. Cer. Soc. Vol. 19 (1999), p.1675.

Google Scholar

[9] G. Dell'Agli and G. Mascolo, J. Mater. Sci. Vol. 35 (2000), p.661.

Google Scholar

[10] T. Mitsuhashi, M. Ichihara and U. Tatsuke, J. Am. Ceram. Soc. Vol. 57 (1974), p.97.

Google Scholar

[11] E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc. Vol. 66 (1974), p.97.

Google Scholar

[12] W. Pyda, Bull. Pol. Ac.: Tech. Vol. 47 (1999), p.397.

Google Scholar

[13] W. Pyda, N. Moskała and A. Pyda, in Proceedings of 10 th International Ceramics Congress, Part B, P. Vincenzini Ed., (Techna s. r. l., Italy, 2002), p.41.

Google Scholar

[14] D. L. Porter and A. H. Heuer, J. Am. Ceram. Soc. Vol. 62 (1979), p.298.

Google Scholar

[15] J. H. Adair, R.P. Denkewicz, F. J. Arriagada, K. Osseo-Asare, in Ceramic Powder Science II, G. L. Messing, E. R. Fuller and H. Hausner Eds, (The American Ceramic Society, Inc. Westerville, Ohio, 1988), p.135.

Google Scholar

[16] W. Pyda, M. S. Gani and L. H. Chen, in Science and Technology of Zirconia V, S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink Eds, (Technomic Publishing Co., Inc., Lancaster, Basel, 1993), p.223.

Google Scholar

[17] E. Tani, M. Yoshimura and S. Somiya, J. Am. Ceram. Soc. Vol. 66 (1983), p.11.

Google Scholar

[18] M. M. Bućko, K. Haberko and M. Faryna, J. Am. Ceram. Soc. Vol. 78 (1995), p.3397.

Google Scholar

[19] H. Nishizawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, J. Am. Ceram. Soc. Vol. 65 (1982), p.343.

Google Scholar