Gate Materials and Fabrication-Processes of Metal-Ferroelectric-Insulator-Semiconductor Memory FETs with Long Data Retention

Article Preview

Abstract:

A recently-developed Pt/SrBi2Ta2O9/(HfO2)x(Al2O3)1-x /Si FET (x=0.75) shows outstanding data retention characteristics. The drain current ratio between the on- and off-states is more than 2 x 106 after 12 days, and the decreasing rate of this ratio is so small that the extrapolated ratio after 10 years is larger than 1 ×105. Among various materials researched for this decade, the combination of SrBi2Ta2O9 and (HfO2)x(Al2O3)1-x or Hf-Al-O is regarded as the best choice presently. Device performance by changing the Hf and Al composition ratio is investigated, and an Hf-rich-side region around x = 0.75 is found most suitable. Pure HfO2 (x=1) is also a good candidate, but the gate leakage current increase due to HfO2 crystallization is observed. Very recently, we fabricated a self-aligned gate Pt/SrBi2Ta2O9/Hf-Al-O/Si FET, and measured the retention characteristics for 33.5 day that is the longest period measured so far. This also shows a sufficiently large ratio of 2.4 × 105 after 33.5 day which will be 6.5 × 104 after 10 years by extrapolation. The development of a self-aligned gate FeFET is an inevitable step of FeFET miniaturization according to the LSI scaling rule.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2382-2391

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Tarui, T. Hirai, K. Teramoto, H. Koike and K. Nagashima: Appl. Surf. Sci. Vol. 113-114 (1997), p.656.

Google Scholar

[2] AIST Press Release (http: /www. aist. go. jp/aist_e/latest_research/2002/20021024/20021024. html), Oct. 24, 2002. S. Sakai: AIST Today Vol. 3, No. 1 (Jan., 2003), p.18. S. Sakai: AIST Today Inter. Edit. No. 8 (2003).

DOI: 10.4324/9780203764343-6

Google Scholar

[3] S. Sakai and R. Ilangovan: IEEE Electron Device Lett. Vol 25 (Jun., 2004), p.369.

Google Scholar

[4] S. Sakai, R. Ilangovan and M. Takahashi: Jpn. J. Appl. Phys. Vol. 43 (Nov. 2004), p.7876.

Google Scholar

[5] S. Sakai, M. Takahashi and R. Ilangovan: Int. Electron Device Meet. Tech. Dig. (Dec. 2004), p.915.

Google Scholar

[6] M. Takahashi and S. Sakai: Jpn. J. Appl. Phys., Vol. 44 (Jun., 2005), p. L800.

Google Scholar

[7] K. Aizawa, B. -E. Park, Y. Kawashima, K. Takahashi and H. Ishiwara: Appl. Phys. Lett. Vol. 85 (Oct., 2004), p.3199.

Google Scholar

[8] K. Takahashi, B. -E. Park, K. Aizawa, and H. Ishiwara: Extended Abst. Int. Conf. Solid State Devices & Materials (Sep., 2004), p.52. K. Takahashi, K. Aizawa, B. -E. Park, and H. Ishiwara: Jpn. J. Appl. Phys., Vol. 44 (Aug., 2005), p.6218.

DOI: 10.7567/ssdm.2004.d-1-2

Google Scholar

[9] S. -B. Xiong and S. Sakai: Appl. Phys. Lett. Vol. 75 (1999), p.1613.

Google Scholar

[10] T. Kijima and H. Matsunaga: Jpn. J. Appl. Phys. Vol. 37 (1998) p.5171. T. Kijima and H. Matsunaga: Jpn. J. Appl. Phys. Vol. 38 (1999) p.2281.

Google Scholar

[11] S. Migita, K. Sakamaki, H. Ota, S. -B. Xiong, Y. Tarui, and S. Sakai: Integrated ferroelectrics Vol. 40 (2001), p.135.

Google Scholar

[12] C. -H. Chien, D. -Y. Wang, M. -J. Yang, P. Lehnen, C. -C. Leu, S. -H. Chuang, T. -Y. Huang: IEEE Electron Device Letters vol. 24 (2003) p.553.

Google Scholar

[13] T. Hirai, K. Nagashima, H. Koike, S. Matsuno, and Y. Tarui: Jpn. J. Appl. Phys. Vol. 35 (1996), p.5150.

Google Scholar

[14] J. Yu, Z. Hong, W. Zhou, G. Cao, J. Xie, X. Li, S. Li, and Z. Li: Appl. Phys. Lett. Vol. 70 (1997), p.490.

Google Scholar

[15] E. Tokumitsu, R.I. Nakamura, and H. Ishiwara: IEEE Electron Device Lett. Vol. 18 (1997), p.160.

Google Scholar

[16] T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, and Y. Tarui: Jpn. J. Appl. Phys. Vol. 36 (1997), p.5908.

Google Scholar

[17] N.A. Basit, H.K. Kim, adn J. Blachere: Appl. Phys. Lett. Vol. 73 (1998) 3941.

Google Scholar

[18] K. Sakamaki, T. Hirai, T. Uesugi, H. Kishi, and Y. Tarui: Jpn. J. Appl. Phys. Vol. 38 (1999), p. L451.

Google Scholar

[19] E. Tokumitsu, G. Fujii, and H. Ishiwara: Jpn. J. Appl. Phys. Vol. 39 (2000), p.2125.

Google Scholar

[20] A. Chin, M.Y. Yang, C.L. Sun, and S.Y. Chen: IEEE Electron Devices Lett. Vol. 22 (2001), p.336.

Google Scholar

[21] K. -H. Kim, J. -P. Han, S. -W. Jung, and T. -P. Ma: IEEE Electron Device Lett. Vol. 23 (2002), p.82.

Google Scholar

[22] The drain current of Fig. 1 in Ref. 3 differs, by one order, from that of Fig. 2 in this paper. This mistake took place during a galley-proof process at that time. The drain-current magnitute of Fig. 2 in this paper is correct.

Google Scholar

[23] C. Chang and J. Lien: Int. Electron Device Meet. Tech. Dig. (1987), p.714. T.Y. Chan, J. Chen, P.K. Ko, and C. Hu: Int. Electron Device Meet. Tech. Dig. (1987), p.718.

Google Scholar