Nanoscale Ferroelectrics

Article Preview

Abstract:

Ferroelectrics are among the most advanced materials for non-volatile storage applications. Their two thermodynamically equivalent groundstates of spontaneous polarization can be toggled between by an external electric field. We present recent progress in the fabrication, registration, manipulation and characterization of nanoscale ferroelectrics. Chemical solution deposition is adapted to a pre-registration process by e-beam lithography to fabricate registered ferroelectric nanostructures below 100 nm width. A post-processing by chemical mechanical polishing either for embedded or free grains modifies the aspect ratio thus controlling the coercive field distribution of nanoferroelectrics. We also discuss some very recent findings of the complex interaction of field and piezoelectric tensor in a real piezoresponse force microscope. This method requires a comprehensive treatment of all contributions to tell apart extrinsic from intrinsic effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2392-2399

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Schmitz, K. Prume, B. Reichenberg, A. Roelofs, R. Waser and S. Tiedke, J. Eur. Ceram. Soc., 24 (2004), p.1145.

Google Scholar

[2] M. Dawber, I. Szafraniak, M. Alexe and J. F. Scott, J. Phys.: Condensed Matter, 15, (2003), p. L667.

Google Scholar

[3] T. Schneller and R. Waser, Ferroelectrics, 267, (2002), p.293.

Google Scholar

[4] S. Bühlmann, P. Muralt, S. von Allmen, Applied Physics Letters, 84, (2004), p.2614.

Google Scholar

[5] S. Clemens, T. Schneller, A. van der Hart, F. Peter and R. Waser, Advanced Materials, 17, (2005), pp.1357-1361.

DOI: 10.1002/adma.200401695

Google Scholar

[6] S. Clemens, T. Schneller, R. Waser, A. Rüdiger, F. Peter, S. Kronholz, T. Schmitz and S. Tiedke, Applied Physics Letters, 87, (2005), p.142904.

DOI: 10.1063/1.2084322

Google Scholar

[7] S. Clemens, S. Röhrig, A. Rüdiger, T. Schneller and R. Waser, small, 2, (2006), pp.500-502.

Google Scholar

[8] A. Rüdiger, T. Schneller, A. Roelofs, S. Tiedke, T. Schmitz, and R. Waser, Applied Physics A, 80, (2005), pp.1247-1255.

DOI: 10.1007/s00339-004-3167-z

Google Scholar

[9] M. Alexe, C. Harnagea, D. Hesse, and U. Gösele, Applied Physics Letters, 79, (2001), pp.242-244.

DOI: 10.1063/1.1385184

Google Scholar

[10] A. Gruverman, A. Kholkin, A. Kingon, and H. Tokumoto, Applied Physics Letters 78, (2001), pp.2751-2753.

DOI: 10.1063/1.1366644

Google Scholar

[11] B. J. Rodriguez, A. Gruverman, A. I. Kingon, R. J. Nemanich, and J. S. Cross, Journal of Applied Physics 95, (2004), p.1958-(1962).

Google Scholar

[12] G. Suyal, E. Colla, R. Gysel, M. Cantoni, and N. Setter, Nanoletters 4, (2004), pp.1339-1342.

Google Scholar

[13] A. Roelofs, Size Effects in Ferroelectric Thin Films, Dissertation RWTH Aachen (2004).

Google Scholar

[14] F. Peter, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, and J. Szade, Applied Physics Letters 85, (2004), p.2896.

DOI: 10.1063/1.1799241

Google Scholar

[15] Landolt-Börnstein New Series, vol. III/16a, edited by K. H. Hellwege, Springer Heidelberg, (1981).

Google Scholar

[16] F. Peter, A. Rüdiger, R. Dittmann, R. Waser, K. Szot, B. Reichenberg and K. Prume, Applied Physics Letters, 87, (2005), p.082901.

DOI: 10.1063/1.2010603

Google Scholar