Molecular Simulation of Ion-Transport inside Chitosan Membranes

Article Preview

Abstract:

We have presented general ideas to develop a theoretical methodology, based on Molecular simulation and Einstein equation aimed to describe the mechanism and behavior of chitosan-membrane ion conductivity and to obtain its magnitude for different ionic species. Atomistic molecular modelling has been utilized to construct an ionic-conducting polymer electrolyte system consisting of poly(chitosan), H O 2 molecules, and + H O 3 , − OH , 2− 4 SO ions, inside of the simulation cell. The COMPASS force field was used. The simulation allows describing the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with previously-reported experimental data for chitosan membranes. The present methodology can be considered as a first step towards understanding these complex problems of technological interest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-198

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. N. V. Ravi Kumar, Reactive &Functional Polymers 46 (2000) 1-27.

Google Scholar

[2] Hudson, S. M. In advances in Chitin Science, Proceedings of the 7 th International Conference on Chitin an Chitosan; Domard, A.; Roberts, G. A. F.; Varum, K., Eds.; Jaques Andre: Lyon, France, 1997; Vol. 2, p.590.

Google Scholar

[3] Wan Y, Creber KAM, Peppley B, Tam Bui V. Polymer 44 (2003) 1057-1065.

DOI: 10.1016/s0032-3861(02)00881-9

Google Scholar

[4] K. Soontarapa, N. Suwan, K-I Ota, S. Mitsushima, and N. Kamiya, Development of Polyeletrolyte Based Proton Exchange Membrane , 9 th APPChE Congress and CHEMECA 2002 29 September - 3 October 2002 Christchurch Convention Centre, Christchurch, New Zealand, paper #345. http: /www. cape. canterbury. ac. nz/webdb/Apcche_Proceedings/APCChE/Data/345REV. pdf.

DOI: 10.1021/je030478t

Google Scholar

[5] Chen-Yang Y W, Hwang J J, Chang F H. Macromolecules 1997, 30: 3825-3831.

Google Scholar

[6] Bohn HG, Schober T. J Am Cer Soc 2000, 83: 768.

Google Scholar

[7] Larmine J, Andrews D. Fuel cell systems explained. Chichester: John Wiley & Sons Ltd.; (2000).

Google Scholar

[8] Haile S. M. Acta Materialia 51 (2003) 5981-600.

Google Scholar

[9] Kordesch K, Smader G. fuel cells and their applications. Weinheim, Germany: VCH; (1996).

Google Scholar

[10] K. Kurita, Controlled functionalization of the polysaccharide chitin, Prog. Polym. Sci. 26 (2001) 19211971.

Google Scholar

[11] Terbojevich M, Carrazo C, Aosani A. Makromol Chem 1989; 190: 2847. 12 Kallio T, Lundstrom M, Sundholm G, Walsby N, Sundholm F, Appl. Electrochem. 32 (2002) 11-18.

DOI: 10.1023/a:1014222132075

Google Scholar

[13] Phillip B, Dautzenberg H, Linow KJ, Kotz J. Prog Polym Sci 1989; 14: 91.

Google Scholar

[14] J. Ennari, M. Elomaa, and F. Sundholm: Polymer, 1999, 40: 5035.

Google Scholar

[15] J. Ennari, I. Neelov, and F. Sundholm: Computational and Theoretical Polymer Science, 2000, 10: 403.

DOI: 10.1016/s1089-3156(00)00006-4

Google Scholar

[16] J. Ennari, M. Elomaa, I. Neelov, and F. Sundholm. Polymer, 2000, 41: 985.

DOI: 10.1016/s0032-3861(99)00235-9

Google Scholar

[17] Sun, H.; Ren, P.; Fried, J. R. The COMPASS forcefield: Parameterization and validation for polyphosphazenes, Computational and Theoretical Polymer Science, (submited).

Google Scholar

[18] Polymer user guide. April 1998. San Diego, CA: MSI, (1998).

Google Scholar

[19] S. Nose. J. Chem. Phys., 81: 511-519, (1984).

Google Scholar

[20] Rappe, A. K.; Goddard, W. A. J. Phys. Chem. 1985, 95, 3358.

Google Scholar

[21] Muller-Plathé F. Acta Polym 1994; 45: 259.

Google Scholar

[22] Wan Y, Creber K. A. M, Peppley B, Bui T. Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, 1379-1397 (2004).

DOI: 10.1002/polb.20007

Google Scholar

[23] Herranen J, Kinnunen J, Mattsson B, Rinne H, Sundholm F, Torrel L. Solid State Ion 1995; 80: 201.

Google Scholar

[24] Ennari J, Neelov I, Sundholm F. Polymer 42 (20001) 8043-8050.

Google Scholar