Diffusion and Defects in Oxides with the K2NiF4Structure Type

Article Preview

Abstract:

K2NiF4 type oxides have received considerable attention in recent years as possible mixed conducting membranes for technologically important applications such as solid oxide fuel cells and oxygen generators. Much of this interest has focused on the oxygen interstitial containing oxides such as La2NiO4+δ. This contribution will review some of the recent work on these and related materials and will present new data on the La2MO4+δ (M= Ni, Co or Mn) systems. In particular data on the oxide ion diffusivity of these systems, as determined by oxygen isotopic exchange and SIMS analysis highlighting the fast oxide ion diffusion (1 x 10-7 cm2s-1 at 750oC) present, will be discussed and the significance of these data evaluated in relation to solid oxide fuel cell systems. A further section of the presentation will consider the oxygen defect species present and discuss the nature of the mobile oxygen ions. Finally some preliminary data on the application of these materials as cathodes will be presented and the performance of the cathodes on intermediate temperature electrolytes discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-179

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.C.H. Steele, Curr. Opin. Solid State Mater. Sci., 1 684-691 (1996).

Google Scholar

[2] B.C.H. Steele in: Proc. of Ceramic Oxygen Ion Conductors and Their Technological Applications, July 19-21, 1995, Ambleside, UK. Brit. Ceram. Proc. (Institute of Materials, London, 1996).

Google Scholar

[3] B.C.H. Steele, Solid State Ionics 86-88 1223-1234 (1996).

Google Scholar

[4] S.B. Adler, Chem. Rev. 104 4791-4843 (2004).

Google Scholar

[5] R.J. Chater, S. Carter, J.A. Kilner and B.C.H. Steele, Solid State Ionics 53-6, 859- 867 (1992).

DOI: 10.1016/0167-2738(92)90266-r

Google Scholar

[6] Y. Yamamura, S. Kawasaki and H. Sakai, Solid State Ionics 126 1999 181-189.

Google Scholar

[7] S. Kim, S. Wang, X. Chen, Y.L. Yang, N. Wu, A. Ignatiev, A.J. Jacobson and B. Abeles, J. Electrochem. Soc., 147 2398 (2000).

Google Scholar

[8] B.C.H. Steele, Solid State Ionics 134 3 (2000).

Google Scholar

[9] E. Boehm, J.M. Bassat, P. Dordor, F. Mauvy, J.C. Grenier and P. Stevens, Solid State Ionics, 176 2717-2725 (2005).

DOI: 10.1016/j.ssi.2005.06.033

Google Scholar

[10] J.M. Bassat, P. Odier, A. Villesuzanne, C. Marin and M. Pouchard, Solid State Ionics, 167 341-347 (2004).

Google Scholar

[11] E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy and J.C. Grenier, Solid State Sciences 5 973-981 (2003).

DOI: 10.1016/s1293-2558(03)00091-8

Google Scholar

[12] F. Mauvy, J.M. Bassat, E. Boehm, P. Dordor and J.P. Loup, Solid State Ionics, 158 395-407 (2003).

Google Scholar

[13] P. Odier, C. Allancon, J.M. Bassat, J. Solid State Chem., 153 381-385 (2000).

Google Scholar

[14] C.N. Munnings, S.J. Skinner, G. Amow, P.S. Whitfield and I.J. Davidson, Solid State Ionics 176 1895-1901 (2005).

DOI: 10.1016/j.ssi.2005.06.002

Google Scholar

[15] S.J. Skinner and J.A. Kilner, Solid State Ionics 135 709-712 (2000).

Google Scholar

[16] V.V. Kharton, A.A. Yaremchenko, A.L. Shaula, M.V. Patrakeev, E.N. Naumovich, D.I. Loginovich, J.R. Frade and F.M.B. Marques, J. Solid State Chem., 177 26-37 (2004).

DOI: 10.1016/s0022-4596(03)00261-5

Google Scholar

[17] A.A. Yaremchenko, V.V. Kharton, M.V. Patrakeev and J. Frade. J. Mater. Chem., 13 1136-1144 (2003).

Google Scholar

[18] V.V. Kharton, A.P. Viskup A.V. Kovalevsky, E.N. Naumovich, and F.M.B. Marques, Solid State Ionics, 143 337-353 (2001).

DOI: 10.1016/s0167-2738(01)00876-1

Google Scholar

[19] V.V. Kharton, A.P. Viskup, E.N. Naumovich, and F.M.B. Marques. J. Mater. Chem., 9 2623-2629 (1999).

Google Scholar

[20] D.M. Bochkov, V.V. Kharton, A.V. Kovalevsky, A.P. Viskup and E.N. Naumovich, Solid State Ionics, 120 281-288 (1999).

DOI: 10.1016/s0167-2738(99)00019-3

Google Scholar

[21] M.V. Patrakeev, E.N. Naumovich, V.V. Kharton, A.A. Yaremchenko, E.V. Tsipis, P. Nunez and J.R. Frade, Solid State Ionics, 176 179-188 (2005).

DOI: 10.1016/j.ssi.2010.03.029

Google Scholar

[22] V.V. Kharton, E.V. Tsipis, A.A. Yaremchenko and J.R. Frade, Solid State Ionics, 166 327-337 (2004).

Google Scholar

[23] E.J. Opila, H.L. Tuller, B.J. Wuensch, and J. Maier, J. Amer. Ceram. Soc. 76 2363-2369 (1993).

Google Scholar

[24] F. Mauvy, C. Lalanne, J.M. Bassat, J.C. Grenier, H. Zhao, P. Dordor, P. Stevens, J. Europ. Ceram. Soc., 25 2669-2672 (2005).

DOI: 10.1016/j.jeurceramsoc.2005.03.120

Google Scholar

[25] J.A. Kilner and C.K.M. Shaw, Solid State Ionics, 154-155 523-527 (2002).

Google Scholar

[26] V.V. Vashook, I.I. Yushkevich, L.V. Kokhanovsky, L.V. Makhnach, S.P. Tolochko, I.F. Kononyuk, H. Ullman and H. Altenburg, Solid State Ionics, 119 23-30 (1999).

DOI: 10.1016/s0167-2738(98)00478-0

Google Scholar

[27] J.A. Kilner and R.A. De Souza, Proc. 17th Riso Int. Symp. Mater. Sci., Eds. F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen and B. Zachau-Christiansen, Riso, 1996 pp.41-54.

Google Scholar

[28] L. Minervini, R.W. Grimes, J.A. Kilner and K.E. Sickafus, J. Mater. Chem. 10 2349-2354 (2000).

Google Scholar

[29] C.K.M. Shaw, PhD Thesis, University of London, (2001).

Google Scholar

[30] E. Boehm, J.M. Bassat, F. Mauvy, P. Dordor, J.C. Grenier and M. Pouchard, in Proc. of 4 th European Solid Oxide Fuel Cell Forum, Ed. A. J. McEvoy, Lucerne, 2000, pp.717-724.

Google Scholar

[31] S.J. Skinner, C.N. Munnings, G. Amow, P. Whitfield and I. Davidson, in Solid Oxide Fuel Cells VIII, Eds. S.C. Singhal, M. Dokiya, The Electrochem. Soc., Pennigton, NJ., 2003, pp.552-560.

Google Scholar

[32] G. Amow and S.J. Skinner, J. Solid State Electrochem., 2006, In press.

Google Scholar