Development of a Superconducting Transformer for Rolling Stock

Article Preview

Abstract:

Having undertaken studies into a lightweight and highly efficient superconducting transformer for rolling stock, we developed a prototype with a primary winding, four secondary windings and a tertiary winding using Bi-2223 high temperature superconducting wire. Its primary voltage is 25kV, which is widely adopted as the catenary voltage on the world's high-speed lines. We adopted liquid nitrogen cooling, the weight being 1.71t excluding the refrigerator. The maximum output available to maintain superconductivity is 3.5MVA. We also introduce railways in Japan.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-211

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Fujimoto, QR of RTRI, Vol. 45, No. 4, Nov. 2004, pp.197-202.

Google Scholar

[2] The Survey on Transport Energy, 1999 (Ministry of Transport, in Japanese).

Google Scholar

[3] H. Fujimoto, National Convention Record, IEEJ, (3. 2001), S18-6 (in Japanese).

Google Scholar

[4] K. Funaki et al., IEEE Trans. Appl. Supercond., 7-2 (1997) 824-827.

Google Scholar

[5] U. Henning et al., Proc. World Congress on Railway Research (WCRR99), 1999, Tokyo, Japan.

Google Scholar

[6] H. Hata et al., Abstracts of CSJ Conference, Vol. 51, B1-9, 1994 (in Japanese).

Google Scholar

[7] H. Hata et al., Proc. 59th Meeting on Cryogenics and Supercond., 1998, B2-2, p.133 (in Japanese).

Google Scholar

[8] H. Fujimoto et al., Physica C, vol. 341-348, Part 4, (11. 2000), pp.2625-2626.

Google Scholar

[9] H. Hata et al., IEEJ, TER and LD, TER-00-50, LD-00-77, (7. 2000), 55-60 (in Japanese).

Google Scholar

[10] H. Hata et al., Intl. Conf. Railway Traction Systems Proc. Vol. 2, May 2001, pp.87-98.

Google Scholar

[11] H. Hata et al., Intl. Conf. Railway Traction Systems, May 2002, Capri.

Google Scholar

[12] H. Kamijo et al., IEEE Trans. Appl. Supercond., 13, No. 2, July 2003, pp.2337-2340.

Google Scholar

[13] H. Kamijo et al., Trans. Intl. Cryogenic Materials Conf. - ICMC, 50B, 2004, pp.871-878.

Google Scholar

[14] H. Kamijo et al., IEEE Trans. Appl. Supercond., Vol. 15, Issue 2, Part 2, 2005, pp.1875-1878.

Google Scholar

[15] K. Ikeda et al., RTRI Report, Vol. 17, No. 5, May 2003 (in Japanese).

Google Scholar

[16] H. Hata et al., Proc. Intl. Conf. Ship Propulsion and Railway Traction Systems, SPRTS, (2005).

Google Scholar

[17] H. Hata et al., QR of RTRI, Vol. 47, No. 1, Feb. 2006, pp.24-27.

Google Scholar

[18] Railway Technical Research Institute (RTRI), URL Home page, http: /www. rtri. or. jp.

Google Scholar

[19] Japan Railway & Transport Review, e. g. No. 16 (6-1998), No. 17 (9-1998), No. 42 (12-2005).

Google Scholar

[20] Japanese Railway Tech Today, RTRI and EJRCF, Dec. (2001).

Google Scholar

[21] S.W. Schwenterly et al., IEEE Trans. Appl. Supercond., Vol. 9, No. 2, June 1999, 680.

Google Scholar

[22] M. Leghissa, et al., Physica C, Vol. 372-376, Part 3, Aug 2002, pp.1688-1693.

Google Scholar

[23] K. Funaki et al. , Cryogenics, Vol. 38, Issue 2, Feb. 1998, pp.211-220.

Google Scholar

[24] H. Riemersma et al, IEEE Trans. Power Appar. Syst., 100, 1981, p.3398.

Google Scholar

[25] H. Zueger, Cryogenics 38 (1998) pp.1169-1172.

Google Scholar

[26] S.P. Mehta et al., IEEE Spectrum, Vol. 34, Issue 7, Jul 1997, pp.43-49.

Google Scholar

[27] L. Masur et al., IEEE Trans. Appl. Supercond. 11 (2001), p.3256.

Google Scholar

[28] S. Kobayashi et al., IEEE Trans. Appl. Supercond., 2005, Vol. 15, Issue 2, Part 3, p.2534.

Google Scholar