Progress of RSFQ High Performance Packet Switch

Article Preview

Abstract:

Internet traffic loads are increasing. Sustaining packet switching throughput of a core node will be difficult. A major reason for this is power consumption and packaging volume. As long as we use only current semiconductor technology, the switching capacity will be limited. Rapid single flux quantum (RSFQ) superconducting technology can overcome such difficulties because of high-speed operation and low-power consumption characteristics. A superconducting wiring also enables high-speed inter-chip communication. We report on progress on packet switch circuit implementation and cryo-cooled packaging for a RSFQ packet switch system. In addition, we discuss a possible packet switch architecture over 100 Tbps that uses RSFQ technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-194

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Likharev and V. K. Semenov: IEEE Trans. Appl. Supercond. Vol. 1 (1991), p.3.

Google Scholar

[2] O. Mukhanov, D. Gupta, A. Kadin, and V. Semenov: Proceedings of IEEE Vol. 92, No. 10 (2004), p.1564.

Google Scholar

[3] S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara: IEEE Trans. on Appl. Supercond. Vol. 5 (1995), p.2447.

Google Scholar

[4] W. Chen, A. Rylyakov, V. Patel, J. Lukens, and K. Likharev: Appl. Phys. Lett. Vol. 73 (1998), p.2817.

Google Scholar

[5] Y. Hashimoto, S. Yorozu, Y. Kameda, and V. K. Semenov: IEEE Trans. Appl. Supercond. Vol. 13 (2003), p.535.

Google Scholar

[6] Y. Hashimoto, S. Yorozu, H. Terai and A. Fujimaki: Physica C Vol. 392-396 (2003), p.1472.

Google Scholar

[7] Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, and N. Yoshikawa: IEEE Trans. Appl. Supercond. Vol. 15, (2005), p.356.

DOI: 10.1109/tasc.2005.849862

Google Scholar

[8] http: /www. cadence. com.

Google Scholar

[9] Y. Kameda, S. Yorozu, Y. Hashimoto, H. Terai, A. Fujimaki, and N. Yoshikawa: IEEE Trans. Appl. Supercond. Vol. 15, (2005), p.6.

DOI: 10.1109/tasc.2005.849862

Google Scholar

[10] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara: Physica C Vol. 378-381 (2002), p.1471.

DOI: 10.1016/s0921-4534(02)01759-8

Google Scholar

[11] A. Kirichenko, O. A. Mukhanov, and A. Ryzhikh: IEEE Trans. Appl. Supercond. Vol. 7 (1997), p.3438.

Google Scholar

[12] T. Yamada, A. Sekiya, A. Akahori, A. Fujimaki, H. Hayakawa, Y. Kameda, S. Yorozu, and H. Terai: Supercond. Sci. Technol., No. 14 (2001), p.1071.

DOI: 10.1088/0953-2048/14/12/319

Google Scholar

[13] http: /www. shicryogenics. com/index. jssx.

Google Scholar

[14] O. Mukhanov, S. Rylov, D. Gaidarenko, N. Dubash, and V. Borzenets: IEEE Trans. Appl. Supercond. Vol. 7 (1997), p.2826.

DOI: 10.1109/77.621825

Google Scholar

[15] Y. Hashimoto, S. Yorozu, T. Satoh, and T. Miyazaki: Appl. Phys. Lett. Vol. 87 (2005), 022502.

Google Scholar

[16] Y. Kameda, S. Yorozu, Y. Hashimoto, H. Terai, A. Fujimaki, and N. Yoshikawa: IEEE Trans. Appl. Supercond. Vol. 15 (2005), p.423.

DOI: 10.1109/tasc.2005.849865

Google Scholar