Interband Pairing Interaction in Magnesium Diboride Probed by Tunneling Spectroscopy

Article Preview

Abstract:

We report on the study of the interband pairing interaction in the two-band superconductor MgB2 by tunneling spectroscopy using thin film tunnel junctions. The films were deposited in situ by an approach comprising a conventional planar B sputter gun and a special homemade Mg evaporator providing a high vapor pressure. For the tunneling experiments sandwich-type crossed-strip tunnel junctions with a native MgB2 oxide as the potential barrier and Al, In or Pb counterelectrodes were prepared. Voltage-dependent differential conductance measurements revealed estimates of the barrier thickness and height of 1.5 nm and 1.6 eV, respectively, and allowed us to determine the phonon-induced structures in the tunneling density of states of the phonon-mediated superconductor MgB2. The analysis of the reduced density of states using the standard single-band Eliashberg equations yielded an effective electron-phonon spectral function accounting for the smaller energy gap. A further analysis involving ab-initio LDA calculations and the two-band Eliashberg equations revealed that the dominant feature in the effective spectral function, a strong peak at 58 meV, was mainly due to the interband pairing interaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: Nature (London) 410 (2001), p.63.

DOI: 10.1038/35065039

Google Scholar

[2] W.L. McMillan: Phys. Rev. 167 (1968), p.331.

Google Scholar

[3] M. Jones and R. Marsh: J. Am. Chem. Soc. 76 (1954), p.1434.

Google Scholar

[4] A.Y. Liu, I.I. Mazin and J. Kortus: Phys. Rev. Lett. 87 (2001), p.87005.

Google Scholar

[5] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen and S.G. Louie: Nature (London) 418 (2002), p.758.

Google Scholar

[6] K. -P. Bohnen, R. Heid and B. Renker: Phys. Rev. Lett. 86 (2001), p.5771.

Google Scholar

[7] H. Suhl, B.T. Matthias and L.R. Walker: Phys. Rev. Lett. 3 (1959), p.552.

Google Scholar

[8] Y. Wang, T. Plackowski and A. Junod: Physica C 355 (2001), p.179.

Google Scholar

[9] F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks and J.D. Jorgensen: Phys. Rev. Lett. 87 (2001), p.047001.

Google Scholar

[10] H.D. Yang, J. -Y. Lin, H.H. Li, F.H. Hsu, C.J. Liu, S. -C. Li, R. -C. Yu and C. -Q. Jin: Phys. Rev. Lett. 87 (2001), p.167003.

Google Scholar

[11] X.K. Chen, M.J. Konstantinovic, J.C. Irwin, D.D. Lawrie and J.P. Franck: Phys. Rev. Lett. 87 (2001), p.157002.

Google Scholar

[12] S. Tsuda, T. Yokoya, T. Kiss, Y. Takano, K. Togano, H. Kito, H. Ihara and S. Shin: Phys. Rev. Lett. 87 (2001), p.177006.

Google Scholar

[13] P. Szabo, P. Samuely, J. Kacmarcik, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat and A.G.M. Jansen: Phys. Rev. Lett. 87 (2001), p.137005.

Google Scholar

[14] F. Laube, G. Goll, J. Hagel, H. v. Löhneysen, D. Ernst and T. Wolf: Europhys. Lett. 56 (2001), p.296.

DOI: 10.1209/epl/i2001-00519-4

Google Scholar

[15] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Tanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus and Ph. Monod: Phys. Rev. Lett. 87 (2001), p.177008.

Google Scholar

[16] J. Geerk, R. Schneider, G. Linker, A.G. Zaitsev, R. Heid, K. -P. Bohnen and H. v. Löhneysen: Phys. Rev. Lett. 94 (2005), p.227005.

Google Scholar

[17] W.L. McMillan and J.M. Rowell: Phys. Rev. Lett. 14 (1965), p.108.

Google Scholar

[18] R. Schneider, J. Geerk, F. Ratzel, G. Linker and A.G. Zaitsev: Appl. Phys. Lett. 85 (2004), p.5290.

DOI: 10.1063/1.1828582

Google Scholar

[19] J.G. Simmons: J. Appl. Phys. 34 (1963), p.238.

Google Scholar

[20] R. Osborn, E.A. Goremychkin, A.I. Kolesnikov and D.G. Hinks: Phys. Rev. Lett. 87 (2001), p.017005.

Google Scholar