Micromachined Devices for Use in Terahertz Applications

Article Preview

Abstract:

Here we present results from key aspects of our interest in using micromachined devices in the THz region. First, our early work on making filters from rods of gold-coated SU8 is described. Pass (up to 97%) and stop bands can be observed which are theoretically underpinned by both FDTD and complex band structure simulations. Second, there is a discussion of how THz radiation passes through two-dimensional periodic arrays of subwavelength apertures. In particular, the geometry of the arrays has been studied with time-domain spectroscopy. A time-of-flight model is presented which can be used to provide insight into the operation of these arrays and has implications for the optimum design of THz plasmonic sensors. Finally, we report the THz ‘super’ extraordinary transmission properties of an optimised hybrid subwavelength aperture array, surrounded by subwavelength grooves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-27

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Metamaterials and Negative Refractive Index, Science, 305 5685 (2004) 788-792.

DOI: 10.1126/science.1096796

Google Scholar

[2] D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial Electromagnetic Clock at Microwave Frequencies, Science, 314 5801 (2006) 977-980.

DOI: 10.1126/science.1133628

Google Scholar

[3] S. Kumar, C.W.I. Chan, Q. Hu, J.L. Reno, A 1. 8-THz quantum cascade laser operating significantly above the temperature of ħω/kB, Nat. Phys. 7 (2011) 166-171.

DOI: 10.1038/nphys1846

Google Scholar

[4] S. Zhong, Y. -C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, R. Müller, P. Kleinebudde, Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography, Opt. and Las. in Eng., 49 3 (2011).

DOI: 10.1016/j.optlaseng.2010.11.003

Google Scholar

[5] J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications – explosives, weapons and drugs, Semcond. Sci. Technol. 20 7 (2005) S266-S280.

DOI: 10.1088/0268-1242/20/7/018

Google Scholar

[6] D. A. Schmidt, O. Birer, S. Funkner, B.P. Born, R. Gnanasekaran, G.W. Schwaab, D.M. Leitner, M. Havenith, J. Am. Chem. Soc., 131 51 (2009) 18512-18517.

DOI: 10.1021/ja9083545

Google Scholar

[7] D.M. Mittleman, J. Cunningham, M.C. Nuss, M. Geva, Noncontact semiconductor wafer characterization with the THz Hall effect, Appl. Phys. Lett. 71 (1997) 16-18.

DOI: 10.1063/1.119456

Google Scholar

[8] R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue, Phys. Med. Biol. 47 (2002) 3853-3863.

DOI: 10.1088/0031-9155/47/21/325

Google Scholar

[9] J.B. Pendry, A.J. Holden, W.J. Steward, I.I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 25 (1996) 4773-4776.

DOI: 10.1103/physrevlett.76.4773

Google Scholar

[10] A.J. Gallant, M.A. Kaliteevski, S. Brand, D. Wood, M. Petty, R.A. Abram, J.M. Chamberlain, Terahertz frequency bandpass filters, J. Appl. Phys. 102 2 (2007) 023102.

DOI: 10.1063/1.2756072

Google Scholar

[11] A.J. Gallant, M.A. Kaliteevski, D. Wood, M.C. Petty, R.A. Abram, G. P. Swift, D.A. Zeze, J.M. Chamberlain, Passband filters for terahertz radiation based on dual metallic photonic structures, Applied Physics Letters, 91 16 (2007) 161115.

DOI: 10.1063/1.2800381

Google Scholar

[12] A.J. Gallant, G.P. Swift, D. Dai, M.A. Kaliteevski, D.A. Zeze, D. Wood, M.C. Petty, S. Brand, R.A. Abram, J.M. Chamberlain, Micromachining for Terahertz Applications, MRS Proceedings, 1016 (2007) 1016-CC05-07.

DOI: 10.1557/proc-1016-cc05-07

Google Scholar

[13] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary transmission through sub-wavelength hole arrays, Nature, 391 (1998) 667-669.

DOI: 10.1038/35570

Google Scholar

[14] A.J. Baragwanath, M.C. Rosamond, A.J. Gallant, J.M. Chamberlain, Time-of-Flight Model for the Extraordinary Transmission Through Periodic Arrays of Subwavelength Apertures at THz frequencies, Plasmonics, 6 4 (2011) 625-636.

DOI: 10.1007/s11468-011-9244-1

Google Scholar

[15] A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Evanescently coupled resonance in surface plasmon enhanced transmission, Opt. Commun., 200 (2001) 1 – 7.

DOI: 10.1016/s0030-4018(01)01558-9

Google Scholar

[16] H.A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66 (1944) 163-182.

Google Scholar

[17] R. Gordon, A. G. Brolo, A. McKinnon, A. Rajpra, B. Leathem, K. L. Kavanagh, Strong polarization in the optical transmission through elliptical nanohole arrays, Phys. Rev. Lett., 92 3 (2004) 037401.

DOI: 10.1103/physrevlett.92.037401

Google Scholar

[18] A.J. Baragwanath, M.C. Rosamond, A.J. Gallant, J.M. Chamberlain, A hybrid aperture-corrugation plasmonic device demonstrating super extraordinary transmission at terahertz frequencies, Proceedings of Infrared, Millimeter and Terahertz Waves, Houston, TX, October (2011).

DOI: 10.1109/irmmw-thz.2011.6104841

Google Scholar