Nanotechnology Enabled In Situ Orthopaedic Sensors for Personalized Medicine

Article Preview

Abstract:

Although improvements have been made in implant design to increase bone formation and promote successful osseointegration using nanotechnology, the clinical diagnosis of early bone growth surrounding implants remains problematic. The development of a device allowing doctors to monitor the healing cascade and to diagnose potential infection or inflammation is necessary. Biological detection can be examined by the electrochemical analysis of electron transfer (or redox) reactions of extracellular matrix proteins involved in bone deposition and resorption. The use of nanomaterials as signal amplifiers in electrochemical sensors has greatly improved the sensitivity of detection. Nanotechnology-enabled electrochemical sensors that can be placed on the implant surface itself show promise as self-diagnosing devices in situ, possibly to detect new bone growth surrounding the implant and other cellular events to ensure implant success.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-50

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fujisawa R, Kuboki Y. [Bone matrix proteins]. Nihon Rinsho 1998 Jun; 56(6): 1425-1429.

Google Scholar

[2] Ecarot-Charrier B, Bouchard F, Delloye C. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate. J Biol Chem 1989 Nov 25; 264(33): 20049-20053.

DOI: 10.1016/s0021-9258(19)47216-5

Google Scholar

[3] Bronner F, Farach-Carson MC. Bone formation. New York: Springer, (2003).

Google Scholar

[4] Isaeva VA, Spirichev VB. [Relative content of the alpha-, beta- and gamma-chains of the soluble collagen fractions from the bone tissue of rats with a varying supply of vitamin D]. Vopr Med Khim 1978 Mar-Apr; 24(2): 270-274.

Google Scholar

[5] Termine JD. Non-collagen proteins in bone. Ciba Found Symp 1988; 136: 178-202.

Google Scholar

[6] Hu Z, Peel SAF, Ho SKC, Sándor GKB, Su Y, Clokie CML. The expression of bone matrix proteins induced by different bioimplants in a rabbit sinus lift model. Journal of Biomedical Materials Research Part A 2010; 95A(4): 1048-1054.

DOI: 10.1002/jbm.a.32911

Google Scholar

[7] Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int 1994 Jun; 18(6): 617-628.

DOI: 10.1006/cbir.1994.1088

Google Scholar

[8] Eastell R, Baumann M, Hoyle N, Wieczorek L. Bone markers: biochemical and clinical perspectives: Informa Health Care, (2001).

Google Scholar

[9] Mintz KP, Midura RJ, Fisher LW. Purification of bone sialoprotein from the medium of the rat osteoblast-like cell line UMR 106-01 BSP. Methods in Cell Science 1994; 16(3): 205-209.

DOI: 10.1007/bf01540652

Google Scholar

[10] Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta 2009 Dec; 1790(12): 1592-1598.

Google Scholar

[11] Zaidi M, Moonga BS, Huang CL-H. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biological Reviews 2004; 79(01): 79-100.

DOI: 10.1017/s1464793103006262

Google Scholar

[12] Blair HC, Zaidi M, Schlesinger PH. Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J 2002; 364(2): 329-341.

DOI: 10.1042/bj20020165

Google Scholar

[13] Sirivisoot S, Webster T, J. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology 2008(29): 295101.

DOI: 10.1088/0957-4484/19/29/295101

Google Scholar

[14] Baughman RH, Zakhidov AA, de Heer WA. Carbon Nanotubes-the Route Toward Applications. Science 2002 August 2, 2002; 297(5582): 787-792.

DOI: 10.1126/science.1060928

Google Scholar

[15] Wang J, Liu G, Jan MR. Ultrasensitive Electrical Biosensing of Proteins and DNA: Carbon-Nanotube Derived Amplification of the Recognition and Transduction Events. Journal of the American Chemical Society 2004; 126(10): 3010-3011.

DOI: 10.1021/ja031723w

Google Scholar

[16] Musameh M, Wang J, Merkoci A, Lin Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications 2002; 4(10): 743-746.

DOI: 10.1016/s1388-2481(02)00451-4

Google Scholar

[17] Wu Y, Ye S, Hu S. Electrochemical study of lincomycin on a multi-wall carbon nanotubes modified glassy carbon electrode and its determination in tablets. Journal of pharmaceutical and biomedical analysis 2006 Jun 7; 41(3): 820-824.

DOI: 10.1016/j.jpba.2006.01.037

Google Scholar

[18] Song Z, Huang J-D, Wu B-Y, Shi H-B, Anzai J-I, Chen Q. Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sensors and Actuators B: Chemical 2006; 115(2): 626-633.

DOI: 10.1016/j.snb.2005.10.030

Google Scholar

[19] Martin-Fernandez I, Gabriel G, Rius G, Villa R, Perez-Murano F, Lora-Tamayo E, et al. Vertically aligned multi-walled carbon nanotube growth on platinum electrodes for bio-impedance applications. Microelectronic Engineering 2009; 86(4-6): 806-808.

DOI: 10.1016/j.mee.2009.02.018

Google Scholar

[20] Javier del Campo F, GarcÌa-CÈspedes J, Xavier MuÒoz F, Bertr·n E. Vertically aligned carbon nanotube based electrodes: Fabrication, characterisation and prospects. Electrochemistry Communications 2008; 10(9): 1242-1245.

DOI: 10.1016/j.elecom.2008.06.010

Google Scholar

[21] Besteman K, Lee J-O, Wiertz FGM, Heering HA, Dekker C. Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Letters 2003; 3(6): 727-730.

DOI: 10.1021/nl034139u

Google Scholar

[22] Park M, Cella LN, Chen W, Myung NV, Mulchandani A. Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives. Biosensors and Bioelectronics 2010; 26(4): 1297-1301.

DOI: 10.1016/j.bios.2010.07.017

Google Scholar

[23] Wang Q, Zhang B, Lin X, Weng W. Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan'Äìmutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker. Sensors and Actuators B: Chemical 2011; 156(2): 599-605.

DOI: 10.1016/j.snb.2011.02.004

Google Scholar

[24] Niu S, Zhao M, Hu L, Zhang S. Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator. Sensors and Actuators B: Chemical 2008; 135(1): 200-205.

DOI: 10.1016/j.snb.2008.08.022

Google Scholar

[25] Rezaei B, Mirahmadi Zare SZ. Modified glassy carbon electrode with multiwall carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples. Sensors and Actuators B: Chemical 2008; 134(1): 292-299.

DOI: 10.1016/j.snb.2008.05.002

Google Scholar

[26] Gooding JJ, Wibowo R, Liu, Yang W, Losic D, Orbons S, et al. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays. Journal of the American Chemical Society 2003; 125(30): 9006-9007.

DOI: 10.1021/ja035722f

Google Scholar

[27] Patolsky F, Weizmann Y, Willner I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie International Edition 2004; 43(16): 2113-2117.

DOI: 10.1002/anie.200353275

Google Scholar

[28] Wang J. Nanomaterial-Based Amplified Transduction of Biomolecular Interactions. Small 2005; 1(11): 1036-1043.

DOI: 10.1002/smll.200500214

Google Scholar

[29] Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 2007; 18(36): 365102.

DOI: 10.1088/0957-4484/18/36/365102

Google Scholar

[30] Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 2011; 22(8): 085101.

DOI: 10.1088/0957-4484/22/8/085101

Google Scholar

[31] Sirivisoot S, Pareta RA, Webster TJ, Pareta R. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform Electrically controlled drug release from nanostructured polypyrrole coated on titanium. J Biomed Mater Res A 2011 Sep 27 Feb 25; 27(10): 33210.

DOI: 10.1002/jbm.a.33210

Google Scholar

[32] Pointe Scientific. Instruction Calcium Reagent Set, Calcium (Arsenazo III). Canton, MI, USA.

Google Scholar

[33] Oldham KB, Myland JC. Fundamentals of electrochemical science. San Diego: Academic Press, (1994).

Google Scholar

[34] Fisher L, Whitson S, Avioli L, Termine J. Matrix sialoprotein of developing bone. J Biol Chem 1983 October 25, 1983; 258(20): 12723-12727.

DOI: 10.1016/s0021-9258(17)44236-0

Google Scholar

[35] Bartl R, Frisch B, Bartl C. Osteoporosis : diagnosis, prevention, therapy. Berlin: Springer, (2009).

Google Scholar

[36] Robins SP. Biochemical markers for assessing skeletal growth. In: Waterlow JC, Beat S, Group IDEC, editors. Causes and mechanisms of linear growth retardation : proceedings of an I/D/E/C/G/ workshop; 1983 1994; London, UK: Macmillan; (1983).

Google Scholar