Movable Polyrotaxane Surfaces for Modulating Cellular Adhesion via Specific RGD-Integrin Binding

Article Preview

Abstract:

Immobilizing bioactive molecules on the materials surfaces is one of the main strategies for creating functional bio-interfaces. In these kinds of bio-interfaces, the density of immobilized functional groups and the following physicochemical factors such as roughness, polarity and electrical charge have been thought important variables for regulating biological responses such as cell adhesion and differentiations. Here in this study, differences between rigidity and dynamically immobilized bioactive molecules on the biological responses will be discussed. In order to develop dynamic bio-interfaces, a polyrotaxane based block-copolymer containing clickable azide groups for conjugating various bioactive molecules was designed. Cell adhesive RGD peptide was then conjugated with the azide group by click reaction on both dynamic and rigid surfaces. As a result, cell adhesive RGD peptide immobilized on the dynamic bio-interfaces shows larger initial cell adhesion area, indicating that molecular dynamics of surface chemical groups is another important variable for the regulation of biological responses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-62

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. E. Discher, P. Janmey, Y. L. Wang, Tissue cells feel and respond to the stiffness of their substrate, Science 310 (2005) 1139-1143.

DOI: 10.1126/science.1116995

Google Scholar

[2] B. Geiger, J. P. Spatz, A. D. Bershadsky, Environmental sensing through focal adhesions, Nature Rev. 10 (2009) 21-33.

DOI: 10.1038/nrm2593

Google Scholar

[3] B. D. Hoffman, C. Grashoff, M. A. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction, Nature 475 (2011) 316-323.

DOI: 10.1038/nature10316

Google Scholar

[4] N. Yui, R. Katoono, A. Yamashita, Functional cyclodextrin polyrotaxanes for drug delivery, Adv. Polym. Sci. 222 (2009) 55-77.

Google Scholar

[5] N. Yui, Emerging biomedical functions through "mobile" polyrotaxanes, in: A. Harada, (ed.), Supramolecular Polymer Chemistry, Wiley-VCH, Weinheim, 2012, pp.195-204.

DOI: 10.1002/9783527639786.ch9

Google Scholar

[6] T. Ooya, M. Eguchi, N. Yui, Supramolecular design for multivalent interaction: high mobility of maltose groups in polyrotaxanes enhanced binding with Concanavalin A, J. Am. Chem. Soc. 125 (2003) 13016-13017.

DOI: 10.1021/ja034583z

Google Scholar

[7] T. Ooya, H. Utsunomiya, M. Eguchi, N. Yui, Rapid Binding of Concanavalin A and Maltose-Polyrotaxane Conjugates Due to Mobile Motion of a-Cyclodextrins Threaded onto a Poly(ethylene glycol), Bioconj. Chem. 16 (2005) 62-69.

DOI: 10.1021/bc049809h

Google Scholar

[8] H. Hyun, N. Yui, Azidated polyrotaxanes for facile and efficient functionalization via click chemistry, Macromol. Rapid Commun. 32 (2011) 326-331.

DOI: 10.1002/marc.201000631

Google Scholar

[9] H. Hyun, N. Yui, Ligand Accessibility to Receptor Binding Sites Enhanced by Movable Polyrotaxanes, Macromol. Biosci. 11 (2011) 765-771.

DOI: 10.1002/mabi.201000507

Google Scholar

[10] Y. Inoue, L. Ye, K. Ishihara, N. Yui, Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces, Colloid Surf. B: Biointerface 89 (2012) 223-227.

DOI: 10.1016/j.colsurfb.2011.09.020

Google Scholar

[11] J-. H. Seo, S. Kakinoki, Y. Inoue, T. Yamaoka, K. Ishihara, N. Yui, Designing dynamic surfaces for regulation of Biological responses, Soft Matter 8 (2012) 5477-5485.

DOI: 10.1039/c2sm25318f

Google Scholar

[12] H. Chen, L. Yuan, W. Song, Z. Wu, D. Li, Biocompatible polymer materials: Role of protein-surface interactions, Prog. Polym. Sci. 33 (2008) 1059-1087.

DOI: 10.1016/j.progpolymsci.2008.07.006

Google Scholar

[13] J. C. Liu, D. A. Tirrell, Cell response to RGD density in cross-linked artificial extracellular matirx protein films. Biomacromolecules 9 (2008) 2984-2988.

DOI: 10.1021/bm800469j

Google Scholar

[14] M. Arnold, V. C. Hirschfeld-Warneken, T. Lohmuller, P. Heil, J. Blummel, E. A. Cavalcanti-Adam, M. Lopez-Garcia, P. Walther, H. Kessler, B. Geiger, J. P. Spatz, Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing, Nano Letter 8 (2008) 2063-2069.

DOI: 10.1021/nl801483w

Google Scholar