[1]
T. Buasri, H. Shim, M. Tahara, T. Inamura, K. Goto, H. Kanetaka, Y. Yamabe-Mitarai, H. Hosoda: submitted to Materials Science Forum (2016).
DOI: 10.4028/www.scientific.net/msf.879.256
Google Scholar
[2]
T. Buasri, H. Shim, M. Tahara, T. Inamura, K. Goto, H. Kanetaka, Y. Yamabe-Mitarai, H. Hosoda: submitted to The Ninth Pacific RIM International Conference on Advanced Materials and Processing (2016).
DOI: 10.4028/www.scientific.net/msf.879.256
Google Scholar
[3]
T. Buasri, H. Shim, M. Tahara, T. Inamura, K. Goto, H. Kanetaka, Y. Yamabe-Mitarai, H. Hosoda: in preparation.
Google Scholar
[4]
H. Shim, M. Tahara, T. Inamura, K. Goto, Y. Yamabe-Mitarai and H. Hosoda, Effect of Nb Addition on Martensitic Transformation Behavior of AuTi–15Co Based Biomedical Shape Memory Alloys, Mater. Trans. 56 (2015) pp.429-434.
DOI: 10.2320/matertrans.m2014418
Google Scholar
[5]
J. K. Bass, H. Fine, G.J. Cisneros, Nickel hypersensitivity in the orthodontic patient, J. Am. J. Orthod. Dentofac. 103 (1993) 280-285.
Google Scholar
[6]
E. Denkhaus, K. Salnikow, Nickel essentiality, toxicity, and carcinogenicity, Critical Reviews in Oncology/Hematoly, 42 (2002) 35-56.
DOI: 10.1016/s1040-8428(01)00214-1
Google Scholar
[7]
A. Biscarini, G. Mazzolai, A. Tuissi, Enhanced Nitinol Properties for Biomedical Applications, Recent Pat Biomed Eng. 1 (2008) 180-196.
DOI: 10.2174/1874764710801030180
Google Scholar
[8]
S. A. M. Tofail, J. Butler, A.A. Gandhi, J.M. Carlson, S. Lavelle, S. Carr, P. Tiernan, G. Warren, K. Kennedy, C. A. Biffi, P. Bassani, A. Tuissi, X-ray visibility and metallurgical features of NiTi shape memory alloy with erbium, Mater Letters. 137 (2014).
DOI: 10.1016/j.matlet.2014.09.071
Google Scholar
[9]
H. C. Donkersloot, J. H. N. Van Vucht, Martensitic Transformations in Gold–Titanium, Palladium–Titanium and Platinum–Titanium Alloys near The Equiatomic Composition, J. Alloy. Compd. 120 (1970) 83-91.
DOI: 10.1016/0022-5088(70)90092-5
Google Scholar
[10]
S. K. Wu, C. M. Wayman, Martensitic Transformations and the Shape Memory Effect in Ti50Ni10Au40 and Ti50Au50 alloys, Metallography. 20 (1987) 359-376.
DOI: 10.1016/0026-0800(87)90045-0
Google Scholar
[11]
H. Hosoda, R. Tachi, T. Inamura, K. Wakashima, S. Miyazaki, Martensitic Transformation of TiAu Shape Memory Alloys, Mater. Sci. Forum. 561-565 (2007) 1541-1544.
DOI: 10.4028/www.scientific.net/msf.561-565.1541
Google Scholar
[12]
M. Nishida, C. M. Wayman and T. Honma, Precipitation Processes in Near-equiatomic TiNi Shape Memory Alloys, Met. Trans A. 17 (1986) 1505-1515.
DOI: 10.1007/bf02650086
Google Scholar
[13]
M. Nishida and T. Honma, All-round Shape Memory Effect in Ni-rich TiNi Alloys Generated by Constrained Aging, Scr. Metall. 18 (1984) 1293-1298.
DOI: 10.1016/0036-9748(84)90125-x
Google Scholar
[14]
S. Miyazaki and K. Otsuka, Deformation and Transition Behavior Associated with the R-phase in Ti-Ni Alloys, Met. Trans. A. 17 (1986) 53-63.
DOI: 10.1007/bf02644442
Google Scholar
[15]
Y. Shinohara, M. Tahara, T. Inamura, S. Miyazaki and H. Hosoda, Effect of Anealing Temperature on Microstructure and Superelastic Proerties of Ti–Au–Cr–Zr Alloy, Mater. Trans. 56 (2015) pp.404-409.
DOI: 10.2320/matertrans.m2014439
Google Scholar
[16]
J. L. Murray, The Au–Ti (Gold–Titanium) System, Bull Alloy Phase Diagr. 4 (1983) 278-283.
Google Scholar
[17]
K. Otsuka and C. M. Wayman, Introduction, in: Shape Memory Materials, (Cambridge University Press, United Kingdom, 1998) pp.27-48.
Google Scholar