Structural Effects of Thermomechanical Processing on the Static and Dynamic Responses of Powder Metallurgy Fe-Mn-Si Based Shape Memory Alloys

Abstract:

Article Preview

Fe-14Mn-6Si-9Cr-5Ni (wt. %) shape memory alloys (SMAs) were produced by powder metallurgy (PM) combined with Mechanical Alloying (MA). The specimens were pressed and sintered under Ar atmosphere from as blended powders as well as from mixtures of as blended and 10, 20, 30 and 40 vol. % MA’ed powders, respectively. The five groups of sintered specimens were hot-rolled, spark-erosion cut and solution treated at five temperatures (923, 1023, …, 1373K/ 300 s/ water). Tensile loading-unloading tests were performed in order to obtain stress-induced martensite at different pre-straining degrees. The static responses of the twenty five types of specimens were evaluated by means of the surface areas under unloading curve (E2) and between loading and unloading curves (E1) which were used for determining static internal friction, Q-1. The dynamic responses of the undeformed specimens were determined by Dynamic Mechanical Analysis (DMA) performed at room temperature with a three-point-bending specimen holder in strain sweep mode. The structure of the twenty five specimens was analyzed X-ray diffraction. The effects of MA fraction were correlated with static and dynamic responses via structural changes.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

153-158

Citation:

E. Mihalache et al., "Structural Effects of Thermomechanical Processing on the Static and Dynamic Responses of Powder Metallurgy Fe-Mn-Si Based Shape Memory Alloys", Advances in Science and Technology, Vol. 97, pp. 153-158, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] D. Dunne, Shape memory in ferrous alloys, in: E. Pereloma, D.V. Edmonds (Eds. ), Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, Vol 2. Woodhead Publishing, 2012, pp.83-125.

DOI: https://doi.org/10.1533/9780857096111.1.83

[2] A. Sato, E. Chishima, K. Soma, T. Mori, Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals, Acta Metall. 30 (1982) 1177-1183.

DOI: https://doi.org/10.1016/0001-6160(82)90011-6

[3] M. Murakami, H. Suzuki and Y. Nakamura, Effect of Si on the shape memory effect of polycrystalline Fe-Mn-Si alloys, Trans. ISIJ 27 (1987) B-87.

[4] T. Maki, Ferrous Shape memory alloys, in: K. Otsuka, C.M. Wayman (Eds. ), Shape Memory Materials, University Press, Cambridge, 1998, 117-132.

[5] H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S., Matsuda, M. Murakami, Effects of alloying additions on Fe-Mn-Si shape memory alloys, ISIJ Int. 30 (1990) 674-679.

DOI: https://doi.org/10.2355/isijinternational.30.674

[6] Y. Moriya, H. Kimura, S. Ishizaki, S. Hashizume, S. Suzuki, H. Suzuki, T. Sampei, Properties of Fe-Cr-Ni-Mn-Si (-Co) shape memory alloys, J. Phys. IV France 01, (1991) C4 433– C4 437.

DOI: https://doi.org/10.1051/jp4:1991465

[7] J.W.J. Lee, B. Weber, C. Leinenbach, Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining, Constr. Build. Mater. 95 (2015) 600–610.

DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.098

[8] A.V. Druker, A. Perotti, I. Esquivel, J. Malarría, A manufacturing process for shaft and pipe couplings of Fe–Mn–Si–Ni–Cr shape memory alloys, Mater. Design 56 (2014) 878–888.

DOI: https://doi.org/10.1016/j.matdes.2013.11.032

[9] T. Maruyama, T. Kurita, S. Kozaki, K. Andou, S. Farjami, H. Kubo, Innovation in producing crane rail fishplate using Fe-Mn-Si-Cr based shape memory alloy, Mater. Sci. Technol. 24 (2008) 908–912.

DOI: https://doi.org/10.1179/174328408x302585

[10] T. Sawaguchi, T. Kikuchi, K. Ogawa, S. Kajiwara, Y. Ikeo, M. Kojima, T. Ogawa, Development of prestressed concrete using Fe-Mn-Si-based shape memory alloys containing NbC, Mater Trans. 47 (2006) 580–583.

DOI: https://doi.org/10.2320/matertrans.47.580

[11] M. Shahverdi, C. Czaderski, M. Motavalli, Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams, Constr. Build. Mater. 112 (2016) 28–38.

DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.174

[12] S. Kajiwara, Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys, Mater. Sci. Eng. A 273-275 (1999) 67–88.

DOI: https://doi.org/10.1016/s0921-5093(99)00290-7

[13] L. Janke, C. Czaderski, M. Motavalli, J. Ruth, Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas, Mater. Struct. 38 (2005) 578-592.

DOI: https://doi.org/10.1007/bf02479550

[14] Y.H. Wen, N. Li, L.R. Xiong, Composition design principles for Fe–Mn–Si–Cr–Ni based alloys with better shape memory effect and higher recovery stress, Mater. Sci. Eng. A, 407 (2005) 31–35.

DOI: https://doi.org/10.1016/j.msea.2005.08.054

[15] T. Liu, H.Y. Liu, Z.T. Zhao, R.Z. Ma, T.D. Hu Y.N. Xie, Mechanical alloying of Fe–Mn and Fe–Mn–Si, Mater. Sci. Eng. A 271 (1999) 8–13.

DOI: https://doi.org/10.1016/s0921-5093(98)01022-3

[16] Z. Zhang, R. Sandström, K. Frisk, A. Salwen, Characterization of intermetallic Fe-Mn-Si powders produced by casting and mechanical ball milling, Powder Technol. 137 (2003) 139–147.

DOI: https://doi.org/10.1016/j.powtec.2003.08.058

[17] T. Saito, C. Kapusta, A. Takasaki, Synthesis and characterization of Fe–Mn–Si shape memory alloy by mechanical alloying and subsequent sintering, Mat. Sci. Eng. A 592 (2014) 88–94.

DOI: https://doi.org/10.1016/j.msea.2013.10.097

[18] L.G. Bujoreanu, S. Stanciu, B. Özkal, R.I. Comăneci, M. Meyer, Comparative study of the structures of Fe-Mn-Si-Cr-Ni shape memory alloys obtained by classical and by powder metallurgy, respectively, ESOMAT (2009) 05003.

DOI: https://doi.org/10.1051/esomat/200905003

[19] B. Pricop, U. Söyler, R.I. Comăneci, B. Özkal L.G. Bujoreanu, Mechanical cycling effects at Fe-Mn-Si-Cr-Ni SMAs obtained by powder metallurgy, Phys. Procedia 10 (2010) 125–131.

DOI: https://doi.org/10.1016/j.phpro.2010.11.087

[20] B. Pricop, U. Söyler, N.M. Lohan, B. Özkal, L.G. Bujoreanu, D. Chicet, C. Munteanu, Thermal behavior of mechanically alloyed powders used for producing an Fe-Mn-Si-Cr-Ni shape memory alloy, J. Mater. Eng. Perform. 21 (2012) 2407-2416.

DOI: https://doi.org/10.1007/s11665-012-0168-5

[21] B. Pricop, U. Söyler, B. Özkal, N. M. Lohan, A. L. Paraschiv, M. G. Suru and L. G. Bujoreanu, Influence of mechanical alloying on the behavior of Fe-Mn-Si-Cr-Ni shape memory alloys made by powder metallurgy, Mater. Sci. Forum, 738-739 (2013).

DOI: https://doi.org/10.4028/www.scientific.net/msf.738-739.237

[22] B. Pricop, U. Söyler, B. Özkal, M.G. Suru, N.M. Lohan, R.I. Comăneci, N. Cimpoeşu, V. Muşat, G. Gurău, B. Istrate, E. Mihalache, L.G. Bujoreanu, A study of martensite formation in powder metallurgy Fe-Mn-Si-Cr-Ni shape memory alloys, Mater. Today: Proc. 2S (2015).

DOI: https://doi.org/10.1016/j.matpr.2015.07.400

[23] E. Mihalache, B. Pricop, M. -G. Suru, N.M. Lohan, R.I. Comăneci, B. Istrate, B. Özkal, L.G. Bujoreanu, Factors influencing martensite transitions in Fe-based shape memory alloys, Matec Web of Conferences 33 (2015) 04002.

DOI: https://doi.org/10.1051/matecconf/20153304002

[24] A. U. Söyler, B. Özkal and L. G. Bujoreanu, Improved Shape Memory Characteristics of Fe-14Mn-6Si-9Cr-5Ni Alloy Via Mechanical Alloying, J. Mater. Eng. Perform. 23 (2014) 2357-2361.

DOI: https://doi.org/10.1007/s11665-014-0998-4

[25] S. Montecinos, Influence of microstructural parameters on damping capacity in CuAlBe shape memory alloys, Mater. Design 68 (2015) 215-220.

DOI: https://doi.org/10.1016/j.matdes.2014.12.034

[26] T. Sawaguchi, L. -G. Bujoreanu, T. Kikuchi, K. Ogawa, F. Yin, Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe-17Mn (mass%) alloys, ISIJ Inter. 48 (2008) 99-106.

DOI: https://doi.org/10.2355/isijinternational.48.99

[27] B. Pricop, E. Mihalache, N.M. Lohan, B. Istrate, M. Mocanu, B. Özkal, L. -G. Bujoreanu, Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA, Matec Web of Conferences 33 (2015).

DOI: https://doi.org/10.1051/matecconf/20153304004