Full Measurement of the Stokes Parameters Using a Subwavelength Silicon On-Chip Polarimeter

Article Preview

Abstract:

Polarimetry enables to measure the state of polarization (SoP) of a light beam, which is essential in many disciplines. Typical polarimeters use bulky and expensive optical elements such as half-wave plates and grid polarizers. Plasmonic nanostructures may help to transform such bulky components into subwavelength metallic elements showing similar performance. Based on the concept of spin-orbit coupling, here we demonstrate a nanophotonic polarimeter that measures the Stokes parameters of a light beam over an ultrabroad bandwidth in a less than a square wavelength active region. Furthermore, the presented approach is applicable to any wavelength regime and technological platform, paving the way for the miniaturization of polarimeters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. L. Brongersma, V. M. Shalaev, The case for plasmonics, Science 328 (2010) 440-441.

Google Scholar

[2] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi, Plasmonic metagratings for simultaneous determination of Stokes parameters, Optica 2 (2015) 716–723.

DOI: 10.1364/optica.2.000716

Google Scholar

[3] J. P. Balthasar Mueller, K. Leosson, F. Capasso, Ultracompact metasurface in-line polarimeter, Optica 3 (2016) 42-47.

DOI: 10.1364/optica.3.000042

Google Scholar

[4] F. Afshinmanesh, J. S. White, W. Cai, M. L. Brongersma, Measurement of the polarization state of light using an integrated plasmonic polarimeter, Nanophotonics 1 (2012) 125-129.

DOI: 10.1515/nanoph-2012-0004

Google Scholar

[5] Y. -B. Xie, Z. -Y. Liu, Q. -J. Wang, Y. -Y. Zhu, X. -J. Zhang, Miniature polarization analyzer based on surface plasmon polaritons, Appl. Phys. Lett. 105 (2014) 101107.

DOI: 10.1063/1.4895517

Google Scholar

[6] K. Y. Bliokh, D. Smirnova, F. Nori, Quantum spin Hall effect of light, Science 348 (2015) 1448-1451.

DOI: 10.1126/science.aaa9519

Google Scholar

[7] A. Espinosa-Soria and A. Martínez, Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides, IEEE Photon. Technol. Lett. 28 (2016) 1561-1564.

DOI: 10.1109/lpt.2016.2553841

Google Scholar

[8] J. Petersen, J. Volz, A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit interaction of light, Science 346 (2014) 67-71.

DOI: 10.1126/science.1257671

Google Scholar

[9] B. le Feber, N. Rotenberg, L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Comm. 6 (2015) 6695.

DOI: 10.1038/ncomms7695

Google Scholar

[10] F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, A. Martínez, Sorting linearly polarized photons with a single scatterer, Opt. Lett. 39 (2014) 1394-1397.

DOI: 10.1364/ol.39.001394

Google Scholar

[11] F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, A. Martinez, Resolving light handedness with an on-chip silicon microdisk, ACS Photon. 1 (2014) 762–767.

DOI: 10.1021/ph500084b

Google Scholar

[12] F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, A. Martínez, Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna, Laser Photon. Rev. 8 (2014) L27-L31.

DOI: 10.1002/lpor.201300184

Google Scholar