Group-Velocity Anomaly Modes in Hybrid Bands of Photonic Crystals Made of Ferroelectrics

Article Preview

Abstract:

In photonic crystals composed of ferroelectrics, the hybrid bands with corresponding to new additional band gaps are expected to appear around the Brillouin zone’s center and boundaries. In this hybrid bands, the group-velocity anomaly modes related to the phonon-polariton branches are expected to be discovered. Propagation characteristics of the group-velocity anomaly modes in the hybrid bands of one-dimensional photonic crystals fabricated by ferroelectric Li2Ge7O15 single crystals are discussed on the basis of finite element method and finite-difference time-domain numerical analyses and experimental results obtained by terahertz time-domain spectroscopy. It is founded that the electric-field intensity of the standing-wave mode at the end point of the dielectric band branch is found to be localized around all of the ferroelectrics plates in the photonic crystal. In contrast, group-velocity anomaly mode in the vicinity of the standing-wave mode is strongly localized around the first ferroelectrics plate on the incident side and decays as it propagates through the following ferroelectrics plates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-114

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ohtaka, Energy band of photons and low-energy photon diffraction, Phys. Rev. B 19 (1979) 5057–5067.

DOI: 10.1103/physrevb.19.5057

Google Scholar

[2] E. Yablonovich, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (1987) 2059–(2062).

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[3] Special review issues on photonic band-gap structures: C.W. Bowden, J.P. Dowling, H.O. Everitt, J. Opt. Soc. Am. B 10 (1993); G. Kurizki, J.W. Haus, J. Mod. Opt. 41 (1994).

Google Scholar

[4] M. Wada, Y. Doi, K. Inoue, J. W. Haus, Z. Yuan, A simple-cubic photonic lattice in silicon, Appl. Phys. Lett. 70 (1997) 2966.

DOI: 10.1063/1.118758

Google Scholar

[5] M. Wada, Y. Doi, K. Inoue, J. W. Haus, Far-infrared transmittance and band-structure correspondence in two-dimensional air-rod photonic crystals, Phys. Rev. B 55 (1997) 10443–10450.

DOI: 10.1103/physrevb.55.10443

Google Scholar

[6] T. Aoki, M. W. Takeda, J. W. Haus, Z. Yuan, M. Tani, K. Sakai, N. Kawai, K. Inoue, Terahertz time-domain study of a pseudo-simple cubic photonic lattice, Phys. Rev. B 64 (2001) 045106.

DOI: 10.1103/physrevb.64.045106

Google Scholar

[7] M. Iida, M. Tani, K. Sakai, M. Watanabe, S. Katayama, H. Kondo, H. Kitahara, S. Kato, M. W. Takeda, Emission from planar defect modes excited with surface modes in three-dimensional photonic crystals, Phys. Rev. B 69 (2004) 245119.

DOI: 10.1103/physrevb.69.245119

Google Scholar

[8] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, (1954).

Google Scholar

[9] T. Kurosawa, Polarization waves in solids, J. Phys. Soc. Jpn. 16 (1961) 1298–1308.

Google Scholar

[10] S. Kojima, N. Tsumura, M. W. Takeda, S. Nishizawa, Far-infrared phonon-polariton dispersion probed by terahertz time-domain spectroscopy, Phys. Rev. B 67 (2003) 035102.

DOI: 10.1103/physrevb.67.035102

Google Scholar

[11] K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, S. Fan, Phonon-polariton excitations in photonic crystals, Phys. Rev. B 68 (2003) 075209.

DOI: 10.1103/physrevb.69.159903

Google Scholar

[12] P. T. Lin, A. Imre, L. E. Ocola, B. W. Wessels, Thin film ferroelectric photonic crystals and their application to thermo-optic switches, Opt. Commun. 282 (2009) 3364–3367.

DOI: 10.1016/j.optcom.2009.03.063

Google Scholar

[13] M. Hangyo, M. Tani, T. Nagashima, Terahertz time-domain spectroscopy of solids: A review, Int. J. Infrared Millimeter Waves 26 (2005) 1661–1690.

DOI: 10.1007/s10762-005-0288-1

Google Scholar

[14] M. Wada, A. Sawada, Y. Ishibashi, Ferroelectricity and a soft mode in Li2Ge7O15 crystal, J. Phys. Soc. Jpn. 50 (1981) 1811–1812.

DOI: 10.1143/jpsj.50.1811

Google Scholar

[15] M. Wada, Y. Ishibashi, Ferroelectric phase transition in Li2Ge7O15, J. Phys. Soc. Jpn. 52 (1983) 193–199.

Google Scholar

[16] M. W. Takeda, Y. Noda, T. Yamaguchi, Inelastic neutron scattering study of ferroelectric phase transition in lithium heptagermanate (Li2Ge7O15), Ferroelectrics 412 (2011) 45–47.

DOI: 10.1080/00150193.2011.542695

Google Scholar