Graphene-Boron Nitride 2D Heterosystems Functionalized with Hydrogen: Structure, Vibrations, Optical Response, Electron Band Engineering and Bonding

Article Preview

Abstract:

We characterise from first principles the structure and bonding in 2D heterosystems made of bilayers or trilayers of graphene and graphene-like-materials (GLMs), stacked on top of each other, and functionalized using hydrogen. The effects of electron band gap opening and tuning, as well as formation of strongly bonded multilayers have been predicted. The linear and nonlinear optical and vibrational spectra were modelled for hydrogenated alternating graphene monolayers with insulating hexagonal boron nitride (h-BN) films. Here we focus mostly on the structural aspect of the 2D heterosystems. The simulated atomic and related electron structures indicate that submonolayer hydrogenation of the outer surfaces of multilayer systems induces covalent interlayer bonds and enables electron gap engineering in otherwise gapless graphene or wide-band gap h-BN. Calculated structural, vibrational, electronic and optical properties of the systems of interest aim to enabling in-situ noninvasive characterization of graphene based multilayers.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M. J. Allen, V. C. Tung, R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2010) 132-145.

DOI: 10.1021/cr900070d

Google Scholar

[2] D. Akinwande, N. Petrone, J. Hone, Two-Dimensional Flexible Nanoelectronics, Nat Commun 5 (2014) 1-12.

DOI: 10.1038/ncomms6678

Google Scholar

[3] A. I. Shkrebtii, J. L. Cabellos, N. Arzate, B. S. Mendoza, P. McNelles, Nonlinear optical characterization of hydrogenated two-dimensional honeycomb carbon (graphene), silicon (silicene) and germanium layer, 7th International Symposium on Ultrafast Surface Dynamics (USD7) Croatia Brijuni Island, 22-26 Aug. (2010).

Google Scholar

[4] A. I. Shkrebtii, E. Heritage, P. McNelles, J. L. Cabellos, B. S. Mendoza, Graphene and Graphane Functionalization with Hydrogen: Electronic and Optical Signatures. Phys. Status Solidi C 9 (2012) 1378-1383.

DOI: 10.1002/pssc.201100705

Google Scholar

[5] J. L. Cheng, C. Salazar, J. E. Sipe, Optical Properties of Functionalized Graphene. Phys. Rev. B 88 (2013) 045438-1-6.

Google Scholar

[6] R. Balog, B. Jorgensen, L. Nilsson, et al, Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption, Nat Mater 9 (2010) 315-319.

Google Scholar

[7] M. Pumera, C. H. A. Wong, Graphane and Hydrogenated Graphene, Chem. Soc. Rev. 42 (2013) 5987-5995.

DOI: 10.1039/c3cs60132c

Google Scholar

[8] Z. Sofer, O. Jankovsky, P. Simek, L. Soferova, D. Sedmidubsky, M. Pumera, Highly Hydrogenated Graphene Via Active Hydrogen Reduction of Graphene Oxide in the Aqueous Phase at Room Temperature, Nanoscale 6 (2014) 2153-2160.

DOI: 10.1039/c3nr05407a

Google Scholar

[9] R. Zapata-Pena, S. M. Anderson, B. S. Mendoza, A. I. Shkrebtii, Nonlinear Optical Responses in Hydrogenated Graphene Structures, physica status solidi (b) 253 (2016) 226-233.

DOI: 10.1002/pssb.201552565

Google Scholar

[10] O. Leenaerts, B. Partoens, F. M. Peeters, Hydrogenation of Bilayer Graphene and the Formation of Bilayer Graphane from First Principles, Phys. Rev. B 80 (2009) 245422-1-6.

DOI: 10.1103/physrevb.80.245422

Google Scholar

[11] A. I. Shkrebtii, J. L. Cabellos, E. Heritage, I. M. Kupchak, D. V. Korbutyak, in XI International Conference on Nanostructured Materials NANO2012, 26-31 Aug. 2012, Rhodes, Greece, Rhodes, Greece, 26-31 Aug. (2012).

Google Scholar

[12] L. Ci, L. Song, C. Jin, D. Jariwala, et al, Atomic Layers of Hybridized Boron Nitride and Graphene Domains, Nat Mater 9 (2010) 430-435.

DOI: 10.1038/nmat2711

Google Scholar

[13] O. V. Yazyev, Y. P. Chen, Polycrystalline Graphene and Other Two-Dimensional Materials, Nat Nano 9 (2014) 755-767.

Google Scholar

[14] L. Kou, C. Chen, S. C. Smith, Phosphorene: Fabrication, Properties, and Applications, The Journal of Physical Chemistry Letters 6 (2015) 2794-2805.

Google Scholar

[15] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small 11 (2015) 640-652.

DOI: 10.1002/smll.201402041

Google Scholar

[16] M. P. Levendorf, C. Kim, L. Brown, et al, Graphene and Boron Nitride Lateral Heterostructures for Atomically Thin Circuitry, Nature 488 (2012) 627-632.

DOI: 10.1038/nature11408

Google Scholar

[17] C. R. Woods, L. Britnell, A. Eckmann, et al, Commensurate-Incommensurate Transition in Graphene on Hexagonal Boron Nitride, Nat Phys 10 (2014) 451-456.

Google Scholar

[18] Quantum Espresso, Integrated Open-Source computer codes for electronic-structure calculations and materials modeling at the nanoscale. URL http: /www. quantum-espresso. org, (2016).

Google Scholar

[19] P. Giannozzi, S. Baroni, Density-Functional Perturbation Theory, in: S. Yip (Ed. ), Handbook of materials modeling,  Springer, Dordrecht, 2005, pp.196-214.

DOI: 10.1007/978-1-4020-3286-8_11

Google Scholar

[20] R. N. Barnett, U. Landman, Born-Oppenheimer Molecular-Dynamics Simulations of Finite Systems: Structure and Dynamics of H2O, Phys. Rev. B 48 (1993) 2081-(2097).

Google Scholar

[21] P. Cudazzo, C. Attaccalite, I. V. Tokatly, A. Rubio, Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane, Phys. Rev. Lett. 104 (2010) 226804, 1-4.

DOI: 10.1103/physrevlett.104.226804

Google Scholar

[22] A.I. Shkrebtii, et al, in preparation.

Google Scholar