Electromagnetic Properties in Multilayer Graphene within the Ritus Formalism: Transverse Electrical Conductivity

Article Preview

Abstract:

Within the framework of the Quantum Field Theory, we discuss how to study electromagnetic properties of a multilayer graphene sample in the presence of electric and magnetic fields, both perpendicular to the graphene planes. We deal with the multilayer system by taking into account the quantum mechanical supersymmetric property of the monolayer Hamiltonian. We solve the Dirac equation for the graphene charge carriers by using the Ritus formalism. This formalism consists in the diagonalization of the operator with and the Dirac gamma matrices which contain information about the pseudo-spin. We calculate the charge carrier propagator for the monolayer case, and we obtain the photon polarization operator, the leading quantum correction to the classical Lagrangian density that encodes the electromagnetic properties of the system through the constitutive equations. With the quantum supersymmetrical properties of both, the monolayer and the multilayer graphene Hamiltonians, it is possible to extend our results to obtain the charge carrier propagator for the multilayer case.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Gregorieva, A. A. Firsov, Science 306 (2004) 666.

DOI: 10.1126/science.1102896

Google Scholar

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81 (2009) 109.

Google Scholar

[3] P. Wallace, Phys. Rev. 71 (1947) 622.

Google Scholar

[4] J. Nilsson, A. H. Castro Neto,F. Guinea, N. M. R. Peres, Phys. Rev. B 78 (2008) 045405.

Google Scholar

[5] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, A. H. Castro Neto, Rev. Mod. Phys. 84 (2012) 1067.

Google Scholar

[6] Y. Sui, J. Appenzeller, Nano Lett. 9 (2009) 2973.

Google Scholar

[7] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, Adv. Mater. 24 (2012) 2844.

DOI: 10.1002/adma.201200489

Google Scholar

[8] S-E. Zhu1, S. Yuan and G. C. A. M. Janssen, EPL (Europhysics Letters) 108 (2014) 17007.

Google Scholar

[9] F. Cooper, A. Khare, U. Shukhatme, Phys. Rep., 251 (1995) 267.

Google Scholar

[10] F. Cooper, A. Khare and U. Shukhatme, Supersymmetry in Quantum Mechanics, World Scientific, Singapore, (2001).

Google Scholar

[11] V.I. Ritus, Annals Phys., 69 (1972) 555.

Google Scholar

[12] V.I. Ritus, Pizma Zh. E. T. F., 20 (1974) 135, in Russian.

Google Scholar

[13] V.I. Ritus, Zh. E. T. F., 75 (1978) 1560, in Russian.

Google Scholar

[14] E. J. Ferrer, V. de la Incera, A. Sanchez, Nucl. Phys. B 864 (2012) 469.

Google Scholar

[15] J. Schwinger, Phys. Rev. D 82, (1951) 664.

Google Scholar

[16] Y. Sui, J. Appenzeller, Nano Lett. 9 (2009) 2973.

Google Scholar

[17] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, Adv. Mater. 24 (2012) 2844.

DOI: 10.1002/adma.201200489

Google Scholar

[18] S-E. Zhu1, S. Yuan and G. C. A. M. Janssen, EPL (Europhysics Letters) 108 (2014) 17007.

Google Scholar