Recent Progress of Transparent Ceramic Scintillators

Article Preview

Abstract:

Recent progress of transparent ceramic scintillators is reviewed. The present work reports the research and development of oxide transparent ceramic materials such as garnet, sesquioxide, complex perovskite and some other kinds. Some representative scintillation properties such as scintillation emission spectra and decay times under X-ray irradiation are presented. Gamma-ray induced scintillation detector properties including pulse height spectrum, energy resolution, and light yield nonproportionality are also shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-53

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Yanagida, Study of rare-earth-doped scintillators, Opt. Mater., 35 (2013) 1987-(1992).

Google Scholar

[2] E.G., Yukihara, S. W. S. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications, Wiley, New York (2011).

Google Scholar

[3] S. W.S. Mckeever Thermoluminescence of Solids, Cambridge University Press, Cambridge (1985).

Google Scholar

[4] Y. Miyamoto, H. Nanto, T. Kurobori, Y. Fujimoto, T. Yanagida, J. Ueda, S. Tanabe, T. Yamamoto, RPL in alpha particle irradiated Ag+-doped phosphate glass, Rad. Meas., 71 (2014) 529-532.

DOI: 10.1016/j.radmeas.2014.08.007

Google Scholar

[5] T. Yanagida, Y. Fujimoto, K. Watanabe, K. Fukuda, N. Kawaguchi, Y. Miyamoto, H. Nanto, Scintillation and Optical Stimulated Luminescence of Ce doped CaF2, Rad. Meas., 71 (2014) 162-165.

DOI: 10.1016/j.radmeas.2014.03.020

Google Scholar

[6] T. Yanagida, Ionizing radiation induced emission: scintillation and storage-type luminescence, J. Lumin. 169 (2016) 544-548.

DOI: 10.1016/j.jlumin.2015.01.006

Google Scholar

[7] D. J. Robbins, On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation, J. Electrochem. Soc. 127 (1980) 2694-2702.

DOI: 10.1149/1.2129574

Google Scholar

[8] A. Lempicki, A. J. Wojtowicz, E. Berman, Fundamental limits of scintillator performance, Nucl. Instrum. Methods A, 333 (1993) 304-311.

Google Scholar

[9] P. A. Rodnyi, P. Dorenbos, C. W. E. van Eijk, Energy Loss in Inorganic Scintillators, Phys. Status Solidi (c), 187 (1995) 15-29.

DOI: 10.1002/pssb.2221870102

Google Scholar

[10] P. Dorenbos, Light output and energy resolution of Ce3+-doped scintillators, Nucl. Instrum. Methods A, 486 (2002) 208-213.

Google Scholar

[11] B. Henderson, G.F. I mbush, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford (1989).

Google Scholar

[12] T. Yanagida, A. Yoshikawa,  Y. Yokota, K. Kamada, Y. Usuki, S. Yamamoto, M. Miyake, M. Baba, K. Sasaki, M. Ito, Development of Pr: LuAG Scintillator Array and Assembly for Positron Emission Mammography, IEEE. Trans. Nucl. Sci., 57 (2010).

DOI: 10.1109/tns.2009.2032265

Google Scholar

[13] D. Totsuka, T. Yanagida, K. Fukuda, N. Kawaguchi, Y. Fujimoto, Y. Yokota, A. Yoshikawa, Performance test of Si PIN photodiode line scanner for thermal neutron detection, Nucl. Instrum. Methods A, 659 (2011) 399-402.

DOI: 10.1016/j.nima.2011.08.014

Google Scholar

[14] T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, V. Chani, Temperature dependence of scintillation properties of bright oxide scintillators for well-logging, Jpn. J. Appl. Phys., 52 (2013) 076401.

DOI: 10.7567/jjap.52.076401

Google Scholar

[15] T. Ito, T. Yanagida, M. Sato, M. Kokubun, T. Takashima, S. Hirakuri, R. Miyawaki, H. Takahashi, K. Makishima, T. Tanaka, K. Nakazawa, T. Takahashi, T. Honda, A 1-Dimensional Gamma-ray Position Sensor based on GSO: Ce Scintillators Coupled to a Si Strip Detector, Nucl. Instr. and Meth. A, 579 (2007).

DOI: 10.1109/tns.2006.879760

Google Scholar

[16] M. Kokubun, K. Abe, Y. Ezoe, Y. Fukazawa, S. Hong, H. Inoue, T. Itoh, T. Kamae, D. Kasama, M. Kawaharada, N. Kawano, K. Kawashima, S. Kawasoe, Y. Kobayashi, J. Kotoku, M. Kouda, A. Kubota, G.M. Madejski, K. Makishima, T. Mitani, H. Miyasaka, R. Miyawaki, K. Mori, M. Mori, T. Murakami, M.M. Murashima, K. Nakazawa, H. Niko, M. Nomachi, M. Ohno, Y. Okada, K. Oonuki, G. Sato, M. Suzuki, H. Takahashi, I. Takahashi, T. Takahashi, K. Tamura, T. Tanaka, M. Tashiro, Y. Terada, S. Tominaga, S. Watanabe, K. Yamaoka, T. Yanagida, D. Yonetoku, Improvements of the Astro-E2 Hard X-ray Detector (HXD-II), IEEE Trans. Nucl. Sci., 51 (2004).

DOI: 10.1109/tns.2004.832921

Google Scholar

[17] G. Knoll, Radiation Detection and Measurement. Hoboken, NJ: Wiley & Sons (2000).

Google Scholar

[18] K. A. Wickersheim, R. V. Alves, R. A. Buchanan, Rare earth oxysulfide x-ray phosphors IEEE Trans. Nucl. Sci. 17 (1970) 57–60.

DOI: 10.1109/tns.1970.4325559

Google Scholar

[19] A. Ikesue, Y. L. Aung, Ceramic laser materials, Nature Photonics, 2 (2008) 721 – 727.

DOI: 10.1038/nphoton.2008.243

Google Scholar

[20] R. L. Coble, Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts, J. Appl. Phys., 32 (1961) 793-799.

DOI: 10.1063/1.1736108

Google Scholar

[21] E. Zych, C. Brecher, A. J. Wojtowicz, H. Lingertat, Luminescence properties of Ce-activated YAG optical ceramic scintillator materials, J. Lumin., 75 (1997) 193-203.

DOI: 10.1016/s0022-2313(97)00103-8

Google Scholar

[22] T. Yanagida, H. Takahashi, T. Ito, D. Kasama, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. ITO, Evaluation of properties of YAG (Ce) ceramic scintillators, IEEE. Nucl. Trans. Sci., 52 (2005) 1836-1841.

DOI: 10.1109/tns.2005.856757

Google Scholar

[23] H. Takahashi, T. Yanagida, D. Kasama, T. Ito, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. Ito, The Temperature Dependence of Gamma-Ray Responses of YAG: Ce Ceramic Scintillators, IEEE Trans. Nucl. Sci. 53 (2006) 2404-2408.

DOI: 10.1109/tns.2006.878575

Google Scholar

[24] T. Yanagida, T. Ito, H. Takahashi, M. Sato, T. Enoto, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. ITO, Improvement of Ceramic YAG(Ce) Scintillator to (YGd)3Al5O12(Ce) for Gamma-ray Detectors, Nucl. Instrum. Meth. A, 579 (2007).

DOI: 10.1016/j.nima.2007.04.173

Google Scholar

[25] G. Hull, J. J. Roberts, J. D. Kuntz, S. E. Fisher, R. D. Sanner, T. M. Tillotson, A. D. Drobshoff, S. A. Payne, N. J. Cherepy. Proc. SPIE Int. Soc. Opt. Eng., 6706, (2007) 670617.

Google Scholar

[26] T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce: GAGG scintillator, Opt. Mat., 35 (2013) 2480-2485.

DOI: 10.1016/j.optmat.2013.07.002

Google Scholar

[27] T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamadaa, S. Yanagida, A. Yoshikawa, H. Yagi, T. Yanagitani, Comparative Study of transparent ceramic and single crystal Ce doped LuAG scintillators, Rad. Meas., 46 (2011) 1503-1505.

DOI: 10.1016/j.radmeas.2011.03.039

Google Scholar

[28] T. Yanagida, Y. Fujimoto, K. Kamada, D. Totsuka, H. Yagi, T. Yanagitani, Y. Futami, S. Yanagida, S. Kurosawa, Y. Yokota, A. Yoshikawa, M. Nikl, Scintillation properties of transparent ceramic Pr: LuAG for different Pr concentration, IEEE Trans. Nucl. Sci., 59 (2012).

DOI: 10.1109/tns.2012.2189583

Google Scholar

[29] C. D. Greskovich, K. N. Woods, Fabrication of transparent ThO2-doped Y2O3, Am. Ceram. Soc. Bull., 52, (1973) 473-478.

Google Scholar

[30] W. Kostler, A. Winnacker, W. Rossner, B. C. Grabmaier, Effect of Pr-codoping on the X-ray induced afterglow of (Y, Gd)2O3: Eu, J. Phys. Chem. Solids, 56 (1995) 907-913.

DOI: 10.1016/0022-3697(95)00023-2

Google Scholar

[31] Y. Shi, Q. W. Chen, J. L. Shi, Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics, Opt. Mater., 31, (2009) 729-733.

DOI: 10.1016/j.optmat.2008.04.017

Google Scholar

[32] M. R. Levy, C. R. Stanek, A. Chroneos, R. W. Grimes, Defect chemistry of doped bixbyite oxides, Solid. State Sci., 9, (2007) 588-593.

DOI: 10.1016/j.solidstatesciences.2007.02.009

Google Scholar

[33] T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Watanabe, H. Yagi, T. Yanagitani, V. Jary, Y. Futami, Y. Yokota, A. Yoshikawa, A. Uritani, T. Iguchi, M. Nikl, Ultrafast Transparent Ceramic Scintillators Using the Yb3+ Charge Transfer Luminescence in RE2O3 Host, Appl. Phys. Express 4 (2011).

DOI: 10.1143/apex.4.126402

Google Scholar

[34] T. Yanagida, Y. Fujimoto, H. Yagi, T. Yanagitani, Optical and scintillation properties of transparent ceramic Yb: Lu2O3 with different Yb concentrations, Opt. Mater., 36 (2014) 1044-1048.

DOI: 10.1016/j.optmat.2014.01.022

Google Scholar

[35] N. Guerassimova, C. Dujardin, N. Garnier, C. Pédrini, A. G. Petrosyan, I. A. Kamenskikh, V. V. Mikhailin, I. N. Shpinkov, D. A. Spassky, K. L. Ovanesyan, G. O. Shirinyan, R. Chipaux, M. Cribier, J. Mallet, J. -P. Meyer, Charge-transfer luminescence and spectroscopic properties of Yb3+ in aluminium and gallium garnets, Nucl. Instrum. Meth-A, 486 (2002).

DOI: 10.1016/s0168-9002(02)00718-0

Google Scholar

[36] L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink, Charge transfer luminescence of Yb3+, J. Lumin. 91 (2000) 177-193.

DOI: 10.1016/s0022-2313(00)00214-3

Google Scholar

[37] Y. Kintaka, S. Kuretake, N. Tanaka, K. Kageyama, H. Takagi, Crystal Structures and Optical Properties of Transparent Ceramics Based on Complex Perovskite Ba(M4+, B12+, B25+)O3(M4+ = Ti, Sn, Zr, Hf; B12+ = Mg, Zn; B25+ = Ta, Nb), J. Am. Ceram. Soc., 93 (2010).

DOI: 10.1111/j.1551-2916.2009.03538.x

Google Scholar

[38] M. Ito, K. Shimamura, D. A. Pawlak, T. Fukuda, Growth of perovskite-type oxides (RE, Sr)(Al, Ta)O3 as substrates for GaN epitaxial growth (RE=La, Nd), J. Cryst. Growth, 235 (2002) 277-282.

DOI: 10.1016/s0022-0248(01)01798-5

Google Scholar

[39] L.M. Feng, L.Q. Jiang, M. Zhu, H.B. Liu, X. Zhou, C.H. Li, Formability of ABO3 cubic perovskites, Journal of Physics and Chemistry of Solids, 69 (2008) 967-974.

DOI: 10.1016/j.jpcs.2007.11.007

Google Scholar

[40] T. Yanagida, Y. Fujimoto, Y. Yokota, A. Yoshikawa, S. Kuretake, Y. Kintaka, N. Tanaka, K. Kageyama, V. Chani, Evaluations of pure and ytterbium doped transparent ceramic complex perovskite scintillators, Opt. Mater., 34 (2011) 414-418.

DOI: 10.1016/j.optmat.2011.04.013

Google Scholar

[41] A. Chaudhry, A. Canning, R. Boutchko, M. J. Weber, N. Grønbech-Jensen, S. E. Derenzo, J. Appl. Phys., 109 (2011) 083708.

Google Scholar

[42] A. Borisevich, M. Korzhik, and P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 497, (2003) 206-209.

Google Scholar

[43] T. Yanagida, G. Okada, Characterizations of Optical Properties and Radiation Induced Luminescence of Bi-doped La2Zr2O7 Transparent Ceramics,J. Ceram. Soc. Jpn., 124 (2016) 564-568.

DOI: 10.2109/jcersj2.15237

Google Scholar

[44] E. V. Van Loef, W. M. Higgins, J. Glodo, C. Brecher, A. Lempicki, V. Venkataramani, W. W. Moses, S. E. Derenzo, K. S. Shah, Scintillation properties of SrHfO3: Ce and BaHfO3: Ce ceramics, IEEE Trans Nucl Sci, 54 (2007) 741-743.

DOI: 10.1109/tns.2007.896343

Google Scholar

[45] H. Nanto, K. Inabe, H. Yamazaki, N. Takeuchi, Isothermal Decay of Thermoluminescence in MgO Single Crystals, J. Phys. Chem. Solids., 36 (1975) 477-478.

DOI: 10.1016/0022-3697(75)90077-3

Google Scholar

[46] N. Takeuchi, K. Inabe, H. Nanto, Effect of iron impurity concentration on kinetics order of thermoluminescent blue emission in MgO single crystals, Solid. State. Commun., 17 (1975) 1267-1269.

DOI: 10.1016/0038-1098(75)90684-5

Google Scholar

[47] S. Wakahara, T. Yanagida, Y. Yokota, Y. Fujimoto, V. Chani, M. Sugiyama, Y. Futami, A. Yoshikawa Phosphorescent Luminescence of Pure Magnesium Oxide Transparent Ceramics Produced by Spark Plasma Sintering, Opt. Mater., 35 (2012) 558-562.

DOI: 10.1016/j.optmat.2012.10.028

Google Scholar

[48] T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Transparent Ceramic and Single Crystal Ceramics International, 42 (2016) 5617-5622.

DOI: 10.1016/j.ceramint.2015.12.070

Google Scholar

[49] T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Translucent Ceramic Doped with Cr3+, Opt. Mater., 54 (2016) 134-138.

DOI: 10.1016/j.optmat.2016.02.030

Google Scholar

[50] T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Transparent Ceramic Doped with Mn2+, J. Ceram. Soc. Jpn., accepted (2016).

DOI: 10.2109/jcersj2.15229

Google Scholar

[51] L. An, A. Ito, T. Goto, Fabrication of transparent Lu3NbO7 by spark plasma sintering, Mater Lett., 65 (2011) 3167-3169.

DOI: 10.1016/j.matlet.2011.07.010

Google Scholar

[52] S. Kh. Batygov, L. S. Bolyasnikova, V. A. Demidenko, E. M. Garibin, M. E. Doroshenko, K. V. Dukel'skiĭ, A. A. Luginina, I. A. Mironov, V. V. Osiko, P. P. Fedorov. BaF2: Ce3+ scintillation ceramicsDokl. Phys., 53 (2008) 485-488.

DOI: 10.1134/s102833580809005x

Google Scholar

[53] D. M. Seliverstov, A. A. Demidenko, E. A. Garibin, S. D. Gain, Yu. I. Gusev, P. P. Fedorov, S. V. Kosyanenko, I. A. Mironov, V. V. Osiko, P. A. Rodnyi, A. N. Smirnov, V. M. Suvorov, New fast scintillators on the base of BaF2 crystals with increased light yield of 0. 9 ns luminescence for TOF PET, Nucl. Instrum. Methods A, 695 (2012).

DOI: 10.1016/j.nima.2011.11.080

Google Scholar

[54] P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, M. Mortier. Synthesis and optical characterizations of Yb-doped CaF2 ceramics, Opt. Mater., 31, (2009) 750-753.

DOI: 10.1016/j.optmat.2008.03.022

Google Scholar

[55] J. Fu, M. Kobayashi, S. Sugimoto, J. M. Parker. Scintillation from Eu2+ in Nanocrystallized Glass, J. Am. Ceram. Soc., 92 (2009) 2119-2121.

DOI: 10.1111/j.1551-2916.2009.03143.x

Google Scholar

[56] S. R. Podowitz, R. M. Gaumé, W. T. Hong, A. Laouar, R. S. Feigelson. IEEE Trans. Nucl. Sci., 57 (2010) 3827.

Google Scholar

[57] T. Yanagida, Y. Fujimoto, A. Yamaji, N. Kawaguchi, K. Kamada, D. Totsuka, K. Fukuda, K. Yamanoi, R. Nishi, S. Kurosawa, T. Shimizu, N. Sarukura, Study of the correlation of scintillation decay and emission wavelength, Rad. Meas., 55 (2013).

DOI: 10.1016/j.radmeas.2012.05.014

Google Scholar

[58] T. Yanagida, A. Yoshikawa, A. Ikesue, K. Kamada, Y. Yokota, Basic properties of ceramic Pr: LuAG scintillator, IEEE Trans. Nucl. Sci., 56 (2009) 2955-2959.

DOI: 10.1109/tns.2009.2026475

Google Scholar

[59] T. Yanagida, N. Kawaguchi, Y. Fujimoto, K. Fukuda, K. Watanabe, A. Yamazaki, A. Uritani, Scintillation properties of LiF-SrF2 and LiF-CaF2 eutectic, J. Lumin., 144 (2013) 212-216.

DOI: 10.1016/j.jlumin.2013.07.016

Google Scholar