Recent Progress of Transparent Ceramic Scintillators

Abstract:

Article Preview

Recent progress of transparent ceramic scintillators is reviewed. The present work reports the research and development of oxide transparent ceramic materials such as garnet, sesquioxide, complex perovskite and some other kinds. Some representative scintillation properties such as scintillation emission spectra and decay times under X-ray irradiation are presented. Gamma-ray induced scintillation detector properties including pulse height spectrum, energy resolution, and light yield nonproportionality are also shown.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

44-53

Citation:

T. Yanagida, "Recent Progress of Transparent Ceramic Scintillators", Advances in Science and Technology, Vol. 98, pp. 44-53, 2017

Online since:

October 2016

Authors:

Export:

Price:

$41.00

* - Corresponding Author

[1] T. Yanagida, Study of rare-earth-doped scintillators, Opt. Mater., 35 (2013) 1987-(1992).

[2] E.G., Yukihara, S. W. S. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications, Wiley, New York (2011).

[3] S. W.S. Mckeever Thermoluminescence of Solids, Cambridge University Press, Cambridge (1985).

[4] Y. Miyamoto, H. Nanto, T. Kurobori, Y. Fujimoto, T. Yanagida, J. Ueda, S. Tanabe, T. Yamamoto, RPL in alpha particle irradiated Ag+-doped phosphate glass, Rad. Meas., 71 (2014) 529-532.

DOI: https://doi.org/10.1016/j.radmeas.2014.08.007

[5] T. Yanagida, Y. Fujimoto, K. Watanabe, K. Fukuda, N. Kawaguchi, Y. Miyamoto, H. Nanto, Scintillation and Optical Stimulated Luminescence of Ce doped CaF2, Rad. Meas., 71 (2014) 162-165.

DOI: https://doi.org/10.1016/j.radmeas.2014.03.020

[6] T. Yanagida, Ionizing radiation induced emission: scintillation and storage-type luminescence, J. Lumin. 169 (2016) 544-548.

DOI: https://doi.org/10.1016/j.jlumin.2015.01.006

[7] D. J. Robbins, On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation, J. Electrochem. Soc. 127 (1980) 2694-2702.

DOI: https://doi.org/10.1149/1.2129574

[8] A. Lempicki, A. J. Wojtowicz, E. Berman, Fundamental limits of scintillator performance, Nucl. Instrum. Methods A, 333 (1993) 304-311.

[9] P. A. Rodnyi, P. Dorenbos, C. W. E. van Eijk, Energy Loss in Inorganic Scintillators, Phys. Status Solidi (c), 187 (1995) 15-29.

DOI: https://doi.org/10.1002/pssb.2221870102

[10] P. Dorenbos, Light output and energy resolution of Ce3+-doped scintillators, Nucl. Instrum. Methods A, 486 (2002) 208-213.

[11] B. Henderson, G.F. I mbush, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford (1989).

[12] T. Yanagida, A. Yoshikawa,  Y. Yokota, K. Kamada, Y. Usuki, S. Yamamoto, M. Miyake, M. Baba, K. Sasaki, M. Ito, Development of Pr: LuAG Scintillator Array and Assembly for Positron Emission Mammography, IEEE. Trans. Nucl. Sci., 57 (2010).

DOI: https://doi.org/10.1109/tns.2009.2032265

[13] D. Totsuka, T. Yanagida, K. Fukuda, N. Kawaguchi, Y. Fujimoto, Y. Yokota, A. Yoshikawa, Performance test of Si PIN photodiode line scanner for thermal neutron detection, Nucl. Instrum. Methods A, 659 (2011) 399-402.

DOI: https://doi.org/10.1109/nssmic.2011.6154514

[14] T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, V. Chani, Temperature dependence of scintillation properties of bright oxide scintillators for well-logging, Jpn. J. Appl. Phys., 52 (2013) 076401.

DOI: https://doi.org/10.7567/jjap.52.076401

[15] T. Ito, T. Yanagida, M. Sato, M. Kokubun, T. Takashima, S. Hirakuri, R. Miyawaki, H. Takahashi, K. Makishima, T. Tanaka, K. Nakazawa, T. Takahashi, T. Honda, A 1-Dimensional Gamma-ray Position Sensor based on GSO: Ce Scintillators Coupled to a Si Strip Detector, Nucl. Instr. and Meth. A, 579 (2007).

DOI: https://doi.org/10.1109/tns.2006.879760

[16] M. Kokubun, K. Abe, Y. Ezoe, Y. Fukazawa, S. Hong, H. Inoue, T. Itoh, T. Kamae, D. Kasama, M. Kawaharada, N. Kawano, K. Kawashima, S. Kawasoe, Y. Kobayashi, J. Kotoku, M. Kouda, A. Kubota, G.M. Madejski, K. Makishima, T. Mitani, H. Miyasaka, R. Miyawaki, K. Mori, M. Mori, T. Murakami, M.M. Murashima, K. Nakazawa, H. Niko, M. Nomachi, M. Ohno, Y. Okada, K. Oonuki, G. Sato, M. Suzuki, H. Takahashi, I. Takahashi, T. Takahashi, K. Tamura, T. Tanaka, M. Tashiro, Y. Terada, S. Tominaga, S. Watanabe, K. Yamaoka, T. Yanagida, D. Yonetoku, Improvements of the Astro-E2 Hard X-ray Detector (HXD-II), IEEE Trans. Nucl. Sci., 51 (2004).

DOI: https://doi.org/10.1109/tns.2004.832921

[17] G. Knoll, Radiation Detection and Measurement. Hoboken, NJ: Wiley & Sons (2000).

[18] K. A. Wickersheim, R. V. Alves, R. A. Buchanan, Rare earth oxysulfide x-ray phosphors IEEE Trans. Nucl. Sci. 17 (1970) 57–60.

DOI: https://doi.org/10.1109/tns.1970.4325559

[19] A. Ikesue, Y. L. Aung, Ceramic laser materials, Nature Photonics, 2 (2008) 721 – 727.

[20] R. L. Coble, Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts, J. Appl. Phys., 32 (1961) 793-799.

DOI: https://doi.org/10.1063/1.1736108

[21] E. Zych, C. Brecher, A. J. Wojtowicz, H. Lingertat, Luminescence properties of Ce-activated YAG optical ceramic scintillator materials, J. Lumin., 75 (1997) 193-203.

DOI: https://doi.org/10.1016/s0022-2313(97)00103-8

[22] T. Yanagida, H. Takahashi, T. Ito, D. Kasama, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. ITO, Evaluation of properties of YAG (Ce) ceramic scintillators, IEEE. Nucl. Trans. Sci., 52 (2005) 1836-1841.

DOI: https://doi.org/10.1109/tns.2005.856757

[23] H. Takahashi, T. Yanagida, D. Kasama, T. Ito, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. Ito, The Temperature Dependence of Gamma-Ray Responses of YAG: Ce Ceramic Scintillators, IEEE Trans. Nucl. Sci. 53 (2006) 2404-2408.

DOI: https://doi.org/10.1109/tns.2006.878575

[24] T. Yanagida, T. Ito, H. Takahashi, M. Sato, T. Enoto, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. ITO, Improvement of Ceramic YAG(Ce) Scintillator to (YGd)3Al5O12(Ce) for Gamma-ray Detectors, Nucl. Instrum. Meth. A, 579 (2007).

DOI: https://doi.org/10.1016/j.nima.2007.04.173

[25] G. Hull, J. J. Roberts, J. D. Kuntz, S. E. Fisher, R. D. Sanner, T. M. Tillotson, A. D. Drobshoff, S. A. Payne, N. J. Cherepy. Proc. SPIE Int. Soc. Opt. Eng., 6706, (2007) 670617.

[26] T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce: GAGG scintillator, Opt. Mat., 35 (2013) 2480-2485.

DOI: https://doi.org/10.1016/j.optmat.2013.07.002

[27] T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamadaa, S. Yanagida, A. Yoshikawa, H. Yagi, T. Yanagitani, Comparative Study of transparent ceramic and single crystal Ce doped LuAG scintillators, Rad. Meas., 46 (2011) 1503-1505.

DOI: https://doi.org/10.1016/j.radmeas.2011.03.039

[28] T. Yanagida, Y. Fujimoto, K. Kamada, D. Totsuka, H. Yagi, T. Yanagitani, Y. Futami, S. Yanagida, S. Kurosawa, Y. Yokota, A. Yoshikawa, M. Nikl, Scintillation properties of transparent ceramic Pr: LuAG for different Pr concentration, IEEE Trans. Nucl. Sci., 59 (2012).

DOI: https://doi.org/10.1109/tns.2012.2189583

[29] C. D. Greskovich, K. N. Woods, Fabrication of transparent ThO2-doped Y2O3, Am. Ceram. Soc. Bull., 52, (1973) 473-478.

[30] W. Kostler, A. Winnacker, W. Rossner, B. C. Grabmaier, Effect of Pr-codoping on the X-ray induced afterglow of (Y, Gd)2O3: Eu, J. Phys. Chem. Solids, 56 (1995) 907-913.

DOI: https://doi.org/10.1016/0022-3697(95)00023-2

[31] Y. Shi, Q. W. Chen, J. L. Shi, Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics, Opt. Mater., 31, (2009) 729-733.

DOI: https://doi.org/10.1016/j.optmat.2008.04.017

[32] M. R. Levy, C. R. Stanek, A. Chroneos, R. W. Grimes, Defect chemistry of doped bixbyite oxides, Solid. State Sci., 9, (2007) 588-593.

DOI: https://doi.org/10.1016/j.solidstatesciences.2007.02.009

[33] T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Watanabe, H. Yagi, T. Yanagitani, V. Jary, Y. Futami, Y. Yokota, A. Yoshikawa, A. Uritani, T. Iguchi, M. Nikl, Ultrafast Transparent Ceramic Scintillators Using the Yb3+ Charge Transfer Luminescence in RE2O3 Host, Appl. Phys. Express 4 (2011).

DOI: https://doi.org/10.1143/apex.4.126402

[34] T. Yanagida, Y. Fujimoto, H. Yagi, T. Yanagitani, Optical and scintillation properties of transparent ceramic Yb: Lu2O3 with different Yb concentrations, Opt. Mater., 36 (2014) 1044-1048.

DOI: https://doi.org/10.1016/j.optmat.2014.01.022

[35] N. Guerassimova, C. Dujardin, N. Garnier, C. Pédrini, A. G. Petrosyan, I. A. Kamenskikh, V. V. Mikhailin, I. N. Shpinkov, D. A. Spassky, K. L. Ovanesyan, G. O. Shirinyan, R. Chipaux, M. Cribier, J. Mallet, J. -P. Meyer, Charge-transfer luminescence and spectroscopic properties of Yb3+ in aluminium and gallium garnets, Nucl. Instrum. Meth-A, 486 (2002).

DOI: https://doi.org/10.1016/s0168-9002(02)00718-0

[36] L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink, Charge transfer luminescence of Yb3+, J. Lumin. 91 (2000) 177-193.

DOI: https://doi.org/10.1016/s0022-2313(00)00214-3

[37] Y. Kintaka, S. Kuretake, N. Tanaka, K. Kageyama, H. Takagi, Crystal Structures and Optical Properties of Transparent Ceramics Based on Complex Perovskite Ba(M4+, B12+, B25+)O3(M4+ = Ti, Sn, Zr, Hf; B12+ = Mg, Zn; B25+ = Ta, Nb), J. Am. Ceram. Soc., 93 (2010).

DOI: https://doi.org/10.1111/j.1551-2916.2009.03538.x

[38] M. Ito, K. Shimamura, D. A. Pawlak, T. Fukuda, Growth of perovskite-type oxides (RE, Sr)(Al, Ta)O3 as substrates for GaN epitaxial growth (RE=La, Nd), J. Cryst. Growth, 235 (2002) 277-282.

DOI: https://doi.org/10.1016/s0022-0248(01)01798-5

[39] L.M. Feng, L.Q. Jiang, M. Zhu, H.B. Liu, X. Zhou, C.H. Li, Formability of ABO3 cubic perovskites, Journal of Physics and Chemistry of Solids, 69 (2008) 967-974.

DOI: https://doi.org/10.1016/j.jpcs.2007.11.007

[40] T. Yanagida, Y. Fujimoto, Y. Yokota, A. Yoshikawa, S. Kuretake, Y. Kintaka, N. Tanaka, K. Kageyama, V. Chani, Evaluations of pure and ytterbium doped transparent ceramic complex perovskite scintillators, Opt. Mater., 34 (2011) 414-418.

DOI: https://doi.org/10.1016/j.optmat.2011.04.013

[41] A. Chaudhry, A. Canning, R. Boutchko, M. J. Weber, N. Grønbech-Jensen, S. E. Derenzo, J. Appl. Phys., 109 (2011) 083708.

[42] A. Borisevich, M. Korzhik, and P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 497, (2003) 206-209.

[43] T. Yanagida, G. Okada, Characterizations of Optical Properties and Radiation Induced Luminescence of Bi-doped La2Zr2O7 Transparent Ceramics,J. Ceram. Soc. Jpn., 124 (2016) 564-568.

DOI: https://doi.org/10.2109/jcersj2.15237

[44] E. V. Van Loef, W. M. Higgins, J. Glodo, C. Brecher, A. Lempicki, V. Venkataramani, W. W. Moses, S. E. Derenzo, K. S. Shah, Scintillation properties of SrHfO3: Ce and BaHfO3: Ce ceramics, IEEE Trans Nucl Sci, 54 (2007) 741-743.

DOI: https://doi.org/10.1109/tns.2007.896343

[45] H. Nanto, K. Inabe, H. Yamazaki, N. Takeuchi, Isothermal Decay of Thermoluminescence in MgO Single Crystals, J. Phys. Chem. Solids., 36 (1975) 477-478.

DOI: https://doi.org/10.1016/0022-3697(75)90077-3

[46] N. Takeuchi, K. Inabe, H. Nanto, Effect of iron impurity concentration on kinetics order of thermoluminescent blue emission in MgO single crystals, Solid. State. Commun., 17 (1975) 1267-1269.

DOI: https://doi.org/10.1016/0038-1098(75)90684-5

[47] S. Wakahara, T. Yanagida, Y. Yokota, Y. Fujimoto, V. Chani, M. Sugiyama, Y. Futami, A. Yoshikawa Phosphorescent Luminescence of Pure Magnesium Oxide Transparent Ceramics Produced by Spark Plasma Sintering, Opt. Mater., 35 (2012) 558-562.

DOI: https://doi.org/10.1016/j.optmat.2012.10.028

[48] T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Transparent Ceramic and Single Crystal Ceramics International, 42 (2016) 5617-5622.

DOI: https://doi.org/10.1016/j.ceramint.2015.12.070

[49] T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Translucent Ceramic Doped with Cr3+, Opt. Mater., 54 (2016) 134-138.

DOI: https://doi.org/10.1016/j.optmat.2016.02.030

[50] T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Transparent Ceramic Doped with Mn2+, J. Ceram. Soc. Jpn., accepted (2016).

[51] L. An, A. Ito, T. Goto, Fabrication of transparent Lu3NbO7 by spark plasma sintering, Mater Lett., 65 (2011) 3167-3169.

DOI: https://doi.org/10.1016/j.matlet.2011.07.010

[52] S. Kh. Batygov, L. S. Bolyasnikova, V. A. Demidenko, E. M. Garibin, M. E. Doroshenko, K. V. Dukel'skiĭ, A. A. Luginina, I. A. Mironov, V. V. Osiko, P. P. Fedorov. BaF2: Ce3+ scintillation ceramicsDokl. Phys., 53 (2008) 485-488.

DOI: https://doi.org/10.1134/s102833580809005x

[53] D. M. Seliverstov, A. A. Demidenko, E. A. Garibin, S. D. Gain, Yu. I. Gusev, P. P. Fedorov, S. V. Kosyanenko, I. A. Mironov, V. V. Osiko, P. A. Rodnyi, A. N. Smirnov, V. M. Suvorov, New fast scintillators on the base of BaF2 crystals with increased light yield of 0. 9 ns luminescence for TOF PET, Nucl. Instrum. Methods A, 695 (2012).

DOI: https://doi.org/10.1016/j.nima.2011.11.080

[54] P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, M. Mortier. Synthesis and optical characterizations of Yb-doped CaF2 ceramics, Opt. Mater., 31, (2009) 750-753.

DOI: https://doi.org/10.1016/j.optmat.2008.03.022

[55] J. Fu, M. Kobayashi, S. Sugimoto, J. M. Parker. Scintillation from Eu2+ in Nanocrystallized Glass, J. Am. Ceram. Soc., 92 (2009) 2119-2121.

DOI: https://doi.org/10.1111/j.1551-2916.2009.03143.x

[56] S. R. Podowitz, R. M. Gaumé, W. T. Hong, A. Laouar, R. S. Feigelson. IEEE Trans. Nucl. Sci., 57 (2010) 3827.

[57] T. Yanagida, Y. Fujimoto, A. Yamaji, N. Kawaguchi, K. Kamada, D. Totsuka, K. Fukuda, K. Yamanoi, R. Nishi, S. Kurosawa, T. Shimizu, N. Sarukura, Study of the correlation of scintillation decay and emission wavelength, Rad. Meas., 55 (2013).

DOI: https://doi.org/10.1016/j.radmeas.2012.05.014

[58] T. Yanagida, A. Yoshikawa, A. Ikesue, K. Kamada, Y. Yokota, Basic properties of ceramic Pr: LuAG scintillator, IEEE Trans. Nucl. Sci., 56 (2009) 2955-2959.

DOI: https://doi.org/10.1109/tns.2009.2026475

[59] T. Yanagida, N. Kawaguchi, Y. Fujimoto, K. Fukuda, K. Watanabe, A. Yamazaki, A. Uritani, Scintillation properties of LiF-SrF2 and LiF-CaF2 eutectic, J. Lumin., 144 (2013) 212-216.

DOI: https://doi.org/10.1016/j.jlumin.2013.07.016