[1]
T. Yanagida, Study of rare-earth-doped scintillators, Opt. Mater., 35 (2013) 1987-(1992).
Google Scholar
[2]
E.G., Yukihara, S. W. S. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications, Wiley, New York (2011).
Google Scholar
[3]
S. W.S. Mckeever Thermoluminescence of Solids, Cambridge University Press, Cambridge (1985).
Google Scholar
[4]
Y. Miyamoto, H. Nanto, T. Kurobori, Y. Fujimoto, T. Yanagida, J. Ueda, S. Tanabe, T. Yamamoto, RPL in alpha particle irradiated Ag+-doped phosphate glass, Rad. Meas., 71 (2014) 529-532.
DOI: 10.1016/j.radmeas.2014.08.007
Google Scholar
[5]
T. Yanagida, Y. Fujimoto, K. Watanabe, K. Fukuda, N. Kawaguchi, Y. Miyamoto, H. Nanto, Scintillation and Optical Stimulated Luminescence of Ce doped CaF2, Rad. Meas., 71 (2014) 162-165.
DOI: 10.1016/j.radmeas.2014.03.020
Google Scholar
[6]
T. Yanagida, Ionizing radiation induced emission: scintillation and storage-type luminescence, J. Lumin. 169 (2016) 544-548.
DOI: 10.1016/j.jlumin.2015.01.006
Google Scholar
[7]
D. J. Robbins, On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation, J. Electrochem. Soc. 127 (1980) 2694-2702.
DOI: 10.1149/1.2129574
Google Scholar
[8]
A. Lempicki, A. J. Wojtowicz, E. Berman, Fundamental limits of scintillator performance, Nucl. Instrum. Methods A, 333 (1993) 304-311.
Google Scholar
[9]
P. A. Rodnyi, P. Dorenbos, C. W. E. van Eijk, Energy Loss in Inorganic Scintillators, Phys. Status Solidi (c), 187 (1995) 15-29.
DOI: 10.1002/pssb.2221870102
Google Scholar
[10]
P. Dorenbos, Light output and energy resolution of Ce3+-doped scintillators, Nucl. Instrum. Methods A, 486 (2002) 208-213.
Google Scholar
[11]
B. Henderson, G.F. I mbush, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford (1989).
Google Scholar
[12]
T. Yanagida, A. Yoshikawa, Y. Yokota, K. Kamada, Y. Usuki, S. Yamamoto, M. Miyake, M. Baba, K. Sasaki, M. Ito, Development of Pr: LuAG Scintillator Array and Assembly for Positron Emission Mammography, IEEE. Trans. Nucl. Sci., 57 (2010).
DOI: 10.1109/tns.2009.2032265
Google Scholar
[13]
D. Totsuka, T. Yanagida, K. Fukuda, N. Kawaguchi, Y. Fujimoto, Y. Yokota, A. Yoshikawa, Performance test of Si PIN photodiode line scanner for thermal neutron detection, Nucl. Instrum. Methods A, 659 (2011) 399-402.
DOI: 10.1016/j.nima.2011.08.014
Google Scholar
[14]
T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, V. Chani, Temperature dependence of scintillation properties of bright oxide scintillators for well-logging, Jpn. J. Appl. Phys., 52 (2013) 076401.
DOI: 10.7567/jjap.52.076401
Google Scholar
[15]
T. Ito, T. Yanagida, M. Sato, M. Kokubun, T. Takashima, S. Hirakuri, R. Miyawaki, H. Takahashi, K. Makishima, T. Tanaka, K. Nakazawa, T. Takahashi, T. Honda, A 1-Dimensional Gamma-ray Position Sensor based on GSO: Ce Scintillators Coupled to a Si Strip Detector, Nucl. Instr. and Meth. A, 579 (2007).
DOI: 10.1109/tns.2006.879760
Google Scholar
[16]
M. Kokubun, K. Abe, Y. Ezoe, Y. Fukazawa, S. Hong, H. Inoue, T. Itoh, T. Kamae, D. Kasama, M. Kawaharada, N. Kawano, K. Kawashima, S. Kawasoe, Y. Kobayashi, J. Kotoku, M. Kouda, A. Kubota, G.M. Madejski, K. Makishima, T. Mitani, H. Miyasaka, R. Miyawaki, K. Mori, M. Mori, T. Murakami, M.M. Murashima, K. Nakazawa, H. Niko, M. Nomachi, M. Ohno, Y. Okada, K. Oonuki, G. Sato, M. Suzuki, H. Takahashi, I. Takahashi, T. Takahashi, K. Tamura, T. Tanaka, M. Tashiro, Y. Terada, S. Tominaga, S. Watanabe, K. Yamaoka, T. Yanagida, D. Yonetoku, Improvements of the Astro-E2 Hard X-ray Detector (HXD-II), IEEE Trans. Nucl. Sci., 51 (2004).
DOI: 10.1109/tns.2004.832921
Google Scholar
[17]
G. Knoll, Radiation Detection and Measurement. Hoboken, NJ: Wiley & Sons (2000).
Google Scholar
[18]
K. A. Wickersheim, R. V. Alves, R. A. Buchanan, Rare earth oxysulfide x-ray phosphors IEEE Trans. Nucl. Sci. 17 (1970) 57–60.
DOI: 10.1109/tns.1970.4325559
Google Scholar
[19]
A. Ikesue, Y. L. Aung, Ceramic laser materials, Nature Photonics, 2 (2008) 721 – 727.
DOI: 10.1038/nphoton.2008.243
Google Scholar
[20]
R. L. Coble, Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts, J. Appl. Phys., 32 (1961) 793-799.
DOI: 10.1063/1.1736108
Google Scholar
[21]
E. Zych, C. Brecher, A. J. Wojtowicz, H. Lingertat, Luminescence properties of Ce-activated YAG optical ceramic scintillator materials, J. Lumin., 75 (1997) 193-203.
DOI: 10.1016/s0022-2313(97)00103-8
Google Scholar
[22]
T. Yanagida, H. Takahashi, T. Ito, D. Kasama, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. ITO, Evaluation of properties of YAG (Ce) ceramic scintillators, IEEE. Nucl. Trans. Sci., 52 (2005) 1836-1841.
DOI: 10.1109/tns.2005.856757
Google Scholar
[23]
H. Takahashi, T. Yanagida, D. Kasama, T. Ito, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. Ito, The Temperature Dependence of Gamma-Ray Responses of YAG: Ce Ceramic Scintillators, IEEE Trans. Nucl. Sci. 53 (2006) 2404-2408.
DOI: 10.1109/tns.2006.878575
Google Scholar
[24]
T. Yanagida, T. Ito, H. Takahashi, M. Sato, T. Enoto, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, T. ITO, Improvement of Ceramic YAG(Ce) Scintillator to (YGd)3Al5O12(Ce) for Gamma-ray Detectors, Nucl. Instrum. Meth. A, 579 (2007).
DOI: 10.1016/j.nima.2007.04.173
Google Scholar
[25]
G. Hull, J. J. Roberts, J. D. Kuntz, S. E. Fisher, R. D. Sanner, T. M. Tillotson, A. D. Drobshoff, S. A. Payne, N. J. Cherepy. Proc. SPIE Int. Soc. Opt. Eng., 6706, (2007) 670617.
Google Scholar
[26]
T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce: GAGG scintillator, Opt. Mat., 35 (2013) 2480-2485.
DOI: 10.1016/j.optmat.2013.07.002
Google Scholar
[27]
T. Yanagida, Y. Fujimoto, Y. Yokota, K. Kamadaa, S. Yanagida, A. Yoshikawa, H. Yagi, T. Yanagitani, Comparative Study of transparent ceramic and single crystal Ce doped LuAG scintillators, Rad. Meas., 46 (2011) 1503-1505.
DOI: 10.1016/j.radmeas.2011.03.039
Google Scholar
[28]
T. Yanagida, Y. Fujimoto, K. Kamada, D. Totsuka, H. Yagi, T. Yanagitani, Y. Futami, S. Yanagida, S. Kurosawa, Y. Yokota, A. Yoshikawa, M. Nikl, Scintillation properties of transparent ceramic Pr: LuAG for different Pr concentration, IEEE Trans. Nucl. Sci., 59 (2012).
DOI: 10.1109/tns.2012.2189583
Google Scholar
[29]
C. D. Greskovich, K. N. Woods, Fabrication of transparent ThO2-doped Y2O3, Am. Ceram. Soc. Bull., 52, (1973) 473-478.
Google Scholar
[30]
W. Kostler, A. Winnacker, W. Rossner, B. C. Grabmaier, Effect of Pr-codoping on the X-ray induced afterglow of (Y, Gd)2O3: Eu, J. Phys. Chem. Solids, 56 (1995) 907-913.
DOI: 10.1016/0022-3697(95)00023-2
Google Scholar
[31]
Y. Shi, Q. W. Chen, J. L. Shi, Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics, Opt. Mater., 31, (2009) 729-733.
DOI: 10.1016/j.optmat.2008.04.017
Google Scholar
[32]
M. R. Levy, C. R. Stanek, A. Chroneos, R. W. Grimes, Defect chemistry of doped bixbyite oxides, Solid. State Sci., 9, (2007) 588-593.
DOI: 10.1016/j.solidstatesciences.2007.02.009
Google Scholar
[33]
T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Watanabe, H. Yagi, T. Yanagitani, V. Jary, Y. Futami, Y. Yokota, A. Yoshikawa, A. Uritani, T. Iguchi, M. Nikl, Ultrafast Transparent Ceramic Scintillators Using the Yb3+ Charge Transfer Luminescence in RE2O3 Host, Appl. Phys. Express 4 (2011).
DOI: 10.1143/apex.4.126402
Google Scholar
[34]
T. Yanagida, Y. Fujimoto, H. Yagi, T. Yanagitani, Optical and scintillation properties of transparent ceramic Yb: Lu2O3 with different Yb concentrations, Opt. Mater., 36 (2014) 1044-1048.
DOI: 10.1016/j.optmat.2014.01.022
Google Scholar
[35]
N. Guerassimova, C. Dujardin, N. Garnier, C. Pédrini, A. G. Petrosyan, I. A. Kamenskikh, V. V. Mikhailin, I. N. Shpinkov, D. A. Spassky, K. L. Ovanesyan, G. O. Shirinyan, R. Chipaux, M. Cribier, J. Mallet, J. -P. Meyer, Charge-transfer luminescence and spectroscopic properties of Yb3+ in aluminium and gallium garnets, Nucl. Instrum. Meth-A, 486 (2002).
DOI: 10.1016/s0168-9002(02)00718-0
Google Scholar
[36]
L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink, Charge transfer luminescence of Yb3+, J. Lumin. 91 (2000) 177-193.
DOI: 10.1016/s0022-2313(00)00214-3
Google Scholar
[37]
Y. Kintaka, S. Kuretake, N. Tanaka, K. Kageyama, H. Takagi, Crystal Structures and Optical Properties of Transparent Ceramics Based on Complex Perovskite Ba(M4+, B12+, B25+)O3(M4+ = Ti, Sn, Zr, Hf; B12+ = Mg, Zn; B25+ = Ta, Nb), J. Am. Ceram. Soc., 93 (2010).
DOI: 10.1111/j.1551-2916.2009.03538.x
Google Scholar
[38]
M. Ito, K. Shimamura, D. A. Pawlak, T. Fukuda, Growth of perovskite-type oxides (RE, Sr)(Al, Ta)O3 as substrates for GaN epitaxial growth (RE=La, Nd), J. Cryst. Growth, 235 (2002) 277-282.
DOI: 10.1016/s0022-0248(01)01798-5
Google Scholar
[39]
L.M. Feng, L.Q. Jiang, M. Zhu, H.B. Liu, X. Zhou, C.H. Li, Formability of ABO3 cubic perovskites, Journal of Physics and Chemistry of Solids, 69 (2008) 967-974.
DOI: 10.1016/j.jpcs.2007.11.007
Google Scholar
[40]
T. Yanagida, Y. Fujimoto, Y. Yokota, A. Yoshikawa, S. Kuretake, Y. Kintaka, N. Tanaka, K. Kageyama, V. Chani, Evaluations of pure and ytterbium doped transparent ceramic complex perovskite scintillators, Opt. Mater., 34 (2011) 414-418.
DOI: 10.1016/j.optmat.2011.04.013
Google Scholar
[41]
A. Chaudhry, A. Canning, R. Boutchko, M. J. Weber, N. Grønbech-Jensen, S. E. Derenzo, J. Appl. Phys., 109 (2011) 083708.
Google Scholar
[42]
A. Borisevich, M. Korzhik, and P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 497, (2003) 206-209.
Google Scholar
[43]
T. Yanagida, G. Okada, Characterizations of Optical Properties and Radiation Induced Luminescence of Bi-doped La2Zr2O7 Transparent Ceramics,J. Ceram. Soc. Jpn., 124 (2016) 564-568.
DOI: 10.2109/jcersj2.15237
Google Scholar
[44]
E. V. Van Loef, W. M. Higgins, J. Glodo, C. Brecher, A. Lempicki, V. Venkataramani, W. W. Moses, S. E. Derenzo, K. S. Shah, Scintillation properties of SrHfO3: Ce and BaHfO3: Ce ceramics, IEEE Trans Nucl Sci, 54 (2007) 741-743.
DOI: 10.1109/tns.2007.896343
Google Scholar
[45]
H. Nanto, K. Inabe, H. Yamazaki, N. Takeuchi, Isothermal Decay of Thermoluminescence in MgO Single Crystals, J. Phys. Chem. Solids., 36 (1975) 477-478.
DOI: 10.1016/0022-3697(75)90077-3
Google Scholar
[46]
N. Takeuchi, K. Inabe, H. Nanto, Effect of iron impurity concentration on kinetics order of thermoluminescent blue emission in MgO single crystals, Solid. State. Commun., 17 (1975) 1267-1269.
DOI: 10.1016/0038-1098(75)90684-5
Google Scholar
[47]
S. Wakahara, T. Yanagida, Y. Yokota, Y. Fujimoto, V. Chani, M. Sugiyama, Y. Futami, A. Yoshikawa Phosphorescent Luminescence of Pure Magnesium Oxide Transparent Ceramics Produced by Spark Plasma Sintering, Opt. Mater., 35 (2012) 558-562.
DOI: 10.1016/j.optmat.2012.10.028
Google Scholar
[48]
T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Transparent Ceramic and Single Crystal Ceramics International, 42 (2016) 5617-5622.
DOI: 10.1016/j.ceramint.2015.12.070
Google Scholar
[49]
T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Translucent Ceramic Doped with Cr3+, Opt. Mater., 54 (2016) 134-138.
DOI: 10.1016/j.optmat.2016.02.030
Google Scholar
[50]
T. Kato, G. Okada, T. Yanagida, Optical, Scintillation and Dosimeter Properties of MgO Transparent Ceramic Doped with Mn2+, J. Ceram. Soc. Jpn., accepted (2016).
DOI: 10.2109/jcersj2.15229
Google Scholar
[51]
L. An, A. Ito, T. Goto, Fabrication of transparent Lu3NbO7 by spark plasma sintering, Mater Lett., 65 (2011) 3167-3169.
DOI: 10.1016/j.matlet.2011.07.010
Google Scholar
[52]
S. Kh. Batygov, L. S. Bolyasnikova, V. A. Demidenko, E. M. Garibin, M. E. Doroshenko, K. V. Dukel'skiĭ, A. A. Luginina, I. A. Mironov, V. V. Osiko, P. P. Fedorov. BaF2: Ce3+ scintillation ceramicsDokl. Phys., 53 (2008) 485-488.
DOI: 10.1134/s102833580809005x
Google Scholar
[53]
D. M. Seliverstov, A. A. Demidenko, E. A. Garibin, S. D. Gain, Yu. I. Gusev, P. P. Fedorov, S. V. Kosyanenko, I. A. Mironov, V. V. Osiko, P. A. Rodnyi, A. N. Smirnov, V. M. Suvorov, New fast scintillators on the base of BaF2 crystals with increased light yield of 0. 9 ns luminescence for TOF PET, Nucl. Instrum. Methods A, 695 (2012).
DOI: 10.1016/j.nima.2011.11.080
Google Scholar
[54]
P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, M. Mortier. Synthesis and optical characterizations of Yb-doped CaF2 ceramics, Opt. Mater., 31, (2009) 750-753.
DOI: 10.1016/j.optmat.2008.03.022
Google Scholar
[55]
J. Fu, M. Kobayashi, S. Sugimoto, J. M. Parker. Scintillation from Eu2+ in Nanocrystallized Glass, J. Am. Ceram. Soc., 92 (2009) 2119-2121.
DOI: 10.1111/j.1551-2916.2009.03143.x
Google Scholar
[56]
S. R. Podowitz, R. M. Gaumé, W. T. Hong, A. Laouar, R. S. Feigelson. IEEE Trans. Nucl. Sci., 57 (2010) 3827.
Google Scholar
[57]
T. Yanagida, Y. Fujimoto, A. Yamaji, N. Kawaguchi, K. Kamada, D. Totsuka, K. Fukuda, K. Yamanoi, R. Nishi, S. Kurosawa, T. Shimizu, N. Sarukura, Study of the correlation of scintillation decay and emission wavelength, Rad. Meas., 55 (2013).
DOI: 10.1016/j.radmeas.2012.05.014
Google Scholar
[58]
T. Yanagida, A. Yoshikawa, A. Ikesue, K. Kamada, Y. Yokota, Basic properties of ceramic Pr: LuAG scintillator, IEEE Trans. Nucl. Sci., 56 (2009) 2955-2959.
DOI: 10.1109/tns.2009.2026475
Google Scholar
[59]
T. Yanagida, N. Kawaguchi, Y. Fujimoto, K. Fukuda, K. Watanabe, A. Yamazaki, A. Uritani, Scintillation properties of LiF-SrF2 and LiF-CaF2 eutectic, J. Lumin., 144 (2013) 212-216.
DOI: 10.1016/j.jlumin.2013.07.016
Google Scholar