Surface Plasmon Effects on Photoluminescence of YAG:Ce3+-Yb3+

Abstract:

Article Preview

Phosphor materials have fascinating applications in the field of photovoltaic and biosensors but low quantum yield is a major hurdle in their applications. In this paper, the influence of surface plasmon on the photoluminescence is investigated with surface modified YAG:Ce3+-Yb3+ coupled with spherical gold nanoparticles. The YAG:Ce3+-Yb3+ photoluminescence band ratio Yb/Ce rise from 0.25 to 0.32 with the plasmon effects. For the photoluminescence, the decay time of Ce reduces from 31.9 ns to 29.9 ns while for Yb from 54.2 ms to 52.0 ms respectively. Further, the plasmon absorption peak is also observed in the spectra of YAG:Ce3+-Yb3+/Au nanoparticles system. The results indicate that the field inside the phosphors has been modulated with surface plasmon of gold nanoparticles.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

32-37

Citation:

T. Hussain et al., "Surface Plasmon Effects on Photoluminescence of YAG:Ce3+-Yb3+", Advances in Science and Technology, Vol. 98, pp. 32-37, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] Q. Duan, F. Qin, H. Zhao, Z. Zhang, W. Cao, Journal of Applied Physics 114 (2013) 213513.

[2] B. Richards, Solar energy materials and solar cells 90 (2006) 1189.

[3] F. Bella, G. Griffini, M. Gerosa, S. Turri, R. Bongiovanni, Journal of Power Sources 283 (2015) 195.

[4] E. Klampaftis, B. Richards, Progress in Photovoltaics: Research and Applications 19 (2011) 345.

[5] E. Klampaftis, D. Ross, S. Seyrling, A.N. Tiwari, B.S. Richards, Solar Energy Materials and Solar Cells 101 (2012) 62.

[6] G. Shao, C. Lou, D. Xiao, Journal of Luminescence 157 (2015) 344.

[7] T. Hussain, H. Ye, D. Xiao, Chinese Physics Letters 33 (2016) 058801.

[8] J.R. Lakowicz, Analytical biochemistry 337 (2005) 171.

[9] S. Schietinger, T. Aichele, H. -Q. Wang, T. Nann, O. Benson, Nano letters 10 (2009) 134.

[10] D. -R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J.I. Kim, J. Lee, C. Kim, B. Park, Applied Physics Letters 99 (2011) 041906.

[11] W. Ge, X. Zhang, M. Liu, Z. Lei, R. Knize, Y. Lu, Theranostics 3 (2013) 282.

[12] D. Grünwald, R.H. Singer, Nature 467 (2010) 604.

[13] F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Nature 463 (2010) 1061.

[14] N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga, Journal of the American Ceramic Society 96 (2013) 2759.

[15] T. Hussain, L. Zhong, M. Danesh, H. Ye, Z. Liang, D. Xiao, C. -W. Qiu, C. Lou, L. Chi, L. Jiang, Nanoscale 7 (2015) 10350.

[16] M.K. Lau, J. Hao, Journal of Nanomaterials 2013 (2013) 6.

[17] H. Zhang, X. Liu, F. Zhao, L. Zhang, Y. Zhang, H. Guo, Optical Materials 34 (2012) 1034.

[18] C. Yen-Chi, H. Woan-Yu, C. Teng-Ming, Journal of Rare Earths 29 (2011) 907.

[19] J. Ueda, S. Tanabe, Journal of Applied Physics 106 (2009) 043101.

[20] Y. Lu, X. Chen, Applied Physics Letters 94 (2009) 193110.

[21] L. Dunn, M. Gostein, B. Stueve, Literature Review of the Effects of UV! Exposure on PV Modules!, NREL PV Module Reliability Workshop, (2013).

[22] W.H. Holley, S.C. Agro, J.P. Galica, L.A. Thoma, R.S. Yorgensen, M. Ezrin, P. Klemchuk, G. Lavigne, H. Thomas, CONFERENCE RECORD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 24 (1994) 893.

DOI: https://doi.org/10.1109/wcpec.1994.520105

[23] A.R. Morrill, D.T. Duong, S.J. Lee, M. Moskovits, Chem. Phys. Lett. 473 (2009) 116.

[24] J.A. Howarter, J.P. Youngblood, Langmuir 22 (2006) 11142.

[25] W. Ge, X. Zhang, M. Liu, Z. Lei, R. Knize, Y. Lu, Theranostics 3 (2013) 282.

[26] J.R. Lakowicz, Anal. Biochem. 337 (2005) 171.

[27] S. Schietinger, T. Aichele, H. -Q. Wang, T. Nann, O. Benson, Nano Lett. 10 (2009) 134.

[28] X. Wang, X. Yan, W. Li, K. Sun, Adv. Mater. 24 (2012) 2742.

[29] R. Esteban, M. Laroche, J. -J. Greffet, J. Appl. Phys. 105 (2009) 033107.

[30] S. Sapra, S. Mayilo, T.A. Klar, A.L. Rogach, J. Feldmann, Adv. Mater. 19 (2007) 569.