Surface Plasmon Effects on Photoluminescence of YAG:Ce3+-Yb3+

Article Preview

Abstract:

Phosphor materials have fascinating applications in the field of photovoltaic and biosensors but low quantum yield is a major hurdle in their applications. In this paper, the influence of surface plasmon on the photoluminescence is investigated with surface modified YAG:Ce3+-Yb3+ coupled with spherical gold nanoparticles. The YAG:Ce3+-Yb3+ photoluminescence band ratio Yb/Ce rise from 0.25 to 0.32 with the plasmon effects. For the photoluminescence, the decay time of Ce reduces from 31.9 ns to 29.9 ns while for Yb from 54.2 ms to 52.0 ms respectively. Further, the plasmon absorption peak is also observed in the spectra of YAG:Ce3+-Yb3+/Au nanoparticles system. The results indicate that the field inside the phosphors has been modulated with surface plasmon of gold nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Duan, F. Qin, H. Zhao, Z. Zhang, W. Cao, Journal of Applied Physics 114 (2013) 213513.

Google Scholar

[2] B. Richards, Solar energy materials and solar cells 90 (2006) 1189.

Google Scholar

[3] F. Bella, G. Griffini, M. Gerosa, S. Turri, R. Bongiovanni, Journal of Power Sources 283 (2015) 195.

DOI: 10.1016/j.jpowsour.2015.02.105

Google Scholar

[4] E. Klampaftis, B. Richards, Progress in Photovoltaics: Research and Applications 19 (2011) 345.

Google Scholar

[5] E. Klampaftis, D. Ross, S. Seyrling, A.N. Tiwari, B.S. Richards, Solar Energy Materials and Solar Cells 101 (2012) 62.

DOI: 10.1016/j.solmat.2012.02.011

Google Scholar

[6] G. Shao, C. Lou, D. Xiao, Journal of Luminescence 157 (2015) 344.

Google Scholar

[7] T. Hussain, H. Ye, D. Xiao, Chinese Physics Letters 33 (2016) 058801.

Google Scholar

[8] J.R. Lakowicz, Analytical biochemistry 337 (2005) 171.

Google Scholar

[9] S. Schietinger, T. Aichele, H. -Q. Wang, T. Nann, O. Benson, Nano letters 10 (2009) 134.

Google Scholar

[10] D. -R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J.I. Kim, J. Lee, C. Kim, B. Park, Applied Physics Letters 99 (2011) 041906.

Google Scholar

[11] W. Ge, X. Zhang, M. Liu, Z. Lei, R. Knize, Y. Lu, Theranostics 3 (2013) 282.

Google Scholar

[12] D. Grünwald, R.H. Singer, Nature 467 (2010) 604.

Google Scholar

[13] F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Nature 463 (2010) 1061.

Google Scholar

[14] N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga, Journal of the American Ceramic Society 96 (2013) 2759.

Google Scholar

[15] T. Hussain, L. Zhong, M. Danesh, H. Ye, Z. Liang, D. Xiao, C. -W. Qiu, C. Lou, L. Chi, L. Jiang, Nanoscale 7 (2015) 10350.

Google Scholar

[16] M.K. Lau, J. Hao, Journal of Nanomaterials 2013 (2013) 6.

Google Scholar

[17] H. Zhang, X. Liu, F. Zhao, L. Zhang, Y. Zhang, H. Guo, Optical Materials 34 (2012) 1034.

Google Scholar

[18] C. Yen-Chi, H. Woan-Yu, C. Teng-Ming, Journal of Rare Earths 29 (2011) 907.

DOI: 10.1016/s1002-0721(10)60565-0

Google Scholar

[19] J. Ueda, S. Tanabe, Journal of Applied Physics 106 (2009) 043101.

Google Scholar

[20] Y. Lu, X. Chen, Applied Physics Letters 94 (2009) 193110.

Google Scholar

[21] L. Dunn, M. Gostein, B. Stueve, Literature Review of the Effects of UV! Exposure on PV Modules!, NREL PV Module Reliability Workshop, (2013).

Google Scholar

[22] W.H. Holley, S.C. Agro, J.P. Galica, L.A. Thoma, R.S. Yorgensen, M. Ezrin, P. Klemchuk, G. Lavigne, H. Thomas, CONFERENCE RECORD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 24 (1994) 893.

DOI: 10.1109/wcpec.1994.520105

Google Scholar

[23] A.R. Morrill, D.T. Duong, S.J. Lee, M. Moskovits, Chem. Phys. Lett. 473 (2009) 116.

Google Scholar

[24] J.A. Howarter, J.P. Youngblood, Langmuir 22 (2006) 11142.

Google Scholar

[25] W. Ge, X. Zhang, M. Liu, Z. Lei, R. Knize, Y. Lu, Theranostics 3 (2013) 282.

Google Scholar

[26] J.R. Lakowicz, Anal. Biochem. 337 (2005) 171.

Google Scholar

[27] S. Schietinger, T. Aichele, H. -Q. Wang, T. Nann, O. Benson, Nano Lett. 10 (2009) 134.

Google Scholar

[28] X. Wang, X. Yan, W. Li, K. Sun, Adv. Mater. 24 (2012) 2742.

Google Scholar

[29] R. Esteban, M. Laroche, J. -J. Greffet, J. Appl. Phys. 105 (2009) 033107.

Google Scholar

[30] S. Sapra, S. Mayilo, T.A. Klar, A.L. Rogach, J. Feldmann, Adv. Mater. 19 (2007) 569.

DOI: 10.1002/adma.200602267

Google Scholar