Technology and Main Properties of PMN-PT-Ferrite Multiferroic Ceramic Composite Materials

Article Preview

Abstract:

In the presented work composite ferroelectric/ferrimagnetic ceramics have been obtained and described. The investigated material is based on PMN-PT powders and Ni-Zn ferrite powder. The Powders of ferroelectric component (i.e. (1–x)PMN-(x)PT with x from 0.25 to 0.40 with step 0.03 were synthesized using the sol-gel method. The magnetic component i.e. nickel-zinc ferrite was obtained from oxides using the classic method of obtaining ceramics. The compositions of PMN–PT used by us have rhombohedral or tetragonal symmetries, or belong to morphotropic region. The final ceramic composite samples were obtained using the classic method of ceramic technology with calcination route and final pressureless densification using free sintering. In this paper, XRD, EDS dielectric and magnetic properties have been investigated and described for the obtained composite ceramic samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.R. Shrout, Z.P. Chang, N. Kim, S. Markgraf, Dielectric behavior of single crystals near the (1-x)PbMg1/3Nb2/3O3-xPbTiO3 morphotropic phase boundary, Ferroelectr. Lett. Sect., 12 (1990) 63.

Google Scholar

[2] A. Kumar Singh, D. Pandey, Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3: A Rietveld study, Phys. Rev. B, 67 (2003) 064102.

Google Scholar

[3] B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z-G Ye, Phase diagram of the ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3 –(x)PbTiO3, Phys. Rev. B, 66 (2002) 054104-0541010.

Google Scholar

[4] J. -M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, G. Calvarin, Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds, Phys. Rev. B, 65 (2002) 064106.

DOI: 10.1103/physrevb.65.064106

Google Scholar

[5] R. Skulski, P. Wawrzała, K. Ćwikiel, D. Bochenek, Dielectric and electromechanical behaviors of PMN–PT ceramic samples, J. Intel. Mat. Sys. Str., 18, 10 (2007) 1049-1056.

DOI: 10.1177/1045389x06072356

Google Scholar

[6] R. Ubic, I. M. Reaney, Structure and dielectric properties of lead pyrochlores, J. Am. Ceram. Soc., 85 (2002) 2472–2478.

DOI: 10.1111/j.1151-2916.2002.tb00483.x

Google Scholar

[7] Z. Jiwei, S. Bo, Z. Liangying, Y. Xi, Preparation and dielectrical properties by sol-gel derived PMN-PT powder and ceramic, Mater. Chem. Phys. 64, 1-4 (2000).

DOI: 10.1016/s0254-0584(99)00200-x

Google Scholar

[8] H. Beltran, N. Maso, B. Julian, E. Cordoncillo, J.B. Carda, P. Escribano, A.R. West, Preparation and characterization of compositions based on PbO-MgO-Nb2O5 using the sol-gel method, J. Sol-Gel Sci. Techn., 26 (2003) 1061-1065.

DOI: 10.1023/a:1020746421355

Google Scholar

[9] M.P. Reddy, W. Madhuri, N. Ramamanohar–Reddy, K.V. Siva–Kumar, V.R.K. Murthy, R. Ramakrishna–Reddy, Magnetic properties of Ni-Zn ferrites prepared by microwave sintering method, J. Electroceram., 28 (2012) 1-9.

DOI: 10.1007/s10832-011-9670-7

Google Scholar

[10] S. Yu, H. Huang, L. Zhou, Y. Yea, S. Ke, Structure and properties of PMN–PT/NZFO laminates and composites, Ceram. Internat., 34 (2008) 701–704.

DOI: 10.1016/j.ceramint.2007.09.011

Google Scholar

[11] A.D. Sheikh, V.L. Mathe, Dielectric, ferroelectric, magnetic and magnetoelectric properties of PMN-PT based ME composites, J. Phys. Chem. Solids, 72 (2011) 1423-1429.

DOI: 10.1016/j.jpcs.2011.08.011

Google Scholar

[12] H. Schmid, Some symmetry aspects of ferroics and single phase multiferroics. J. Phys.: Condens. Matter 20 (2008) 434201.

DOI: 10.1088/0953-8984/20/43/434201

Google Scholar

[13] Ce–Wen Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 103 (2008) 031101.

DOI: 10.1063/1.2836410

Google Scholar

[14] D. Bochenek, P. Niemiec, A. Chrobak, G. Ziółkowski, A. Błachowski, Magnetic and electric properties of the lead free ceramic composite based on the BFN and ferrite powders, Mater. Charact., 87 (2014) 36-44.

DOI: 10.1016/j.matchar.2013.10.027

Google Scholar

[15] D. Bochenek, J. Dudek, Influence of the processing conditions on the properties of the biferroic Pb(Fe1/2Nb1/2)O3 ceramics, Eur. Phys. J. – Spec. Top., 154 (2008) 19-22.

DOI: 10.1140/epjst/e2008-00510-9

Google Scholar

[16] D. Khomskii, Classifying multiferroics: Mechanisms and effects, Physics, 2 (2009) 20.

Google Scholar

[17] J.F. Scott, Applications of magnetoelectrics, J. Mater. Chem. 22 (2012) 4567-4574.

Google Scholar

[18] D.K. Pradhan, R.N.P. Chowdhury, T.K. Nath, Magnetoelectric properties of PbZr0. 53Ti0. 47O3–Ni0. 65Zn0. 35Fe2O4 multiferroic nanocomposites, Appl. Nanosci. 2 (2012) 261-273.

DOI: 10.1007/s13204-012-0103-y

Google Scholar

[19] D. Bochenek, P. Niemiec R. Skulski, A. Chrobak, P. Wawrzała, Ferroelectric and magnetic properties of the PMN-PT-nickel zinc ferrite multiferroic ceramic composite materials, Materials Chemistry and Physics 157 (2015) 116-123.

DOI: 10.1016/j.matchemphys.2015.03.025

Google Scholar

[20] M. Atif, M. Nadeem, Sol–gel synthesis of nanocrystalline Zn12xNixFe2O4 ceramics and its structural, magnetic and dielectric properties, J. Sol-Gel Sci. Technol. 72 (2014) 615-626.

DOI: 10.1007/s10971-014-3484-4

Google Scholar

[21] P. Guzdek, M. Sikora, Ł. Góra, C. Kapusta, Magnetic and magnetoelectric properties of nickel ferrite–lead iron niobate relaxor composites, J. Eur. Ceram. Soc. 32 (2012) 2007-(2011).

DOI: 10.1016/j.jeurceramsoc.2011.10.035

Google Scholar