Transport and Electrochemical Properties of LiyNixMn2-xO4 (0.1 ≤ x ≤ 0.5) Cathode Materials

Article Preview

Abstract:

In this paper structural, electrical, electrochemical and thermal (DSC) characterization of series of manganese spinel samples with manganese substituted to different degree (x = 0 – 0.5) with nickel are presented. The conductivity and thermoelectric power measurements were performed in wide temperature range also versus oxygen partial pressure and for deintercalated samples. Electrochemical studies of these cathode materials were conducted in Li / Li+ / LiyNixMn2−xO4 type cells. Substitution of manganese with nickel causes disappearance of the phase transition characteristic of LiMn2O4 spinel. Studies of electrical properties reveal that Ni ions do not participate in charge transport at low temperatures. In the charge curves of Li / Li+/ LiyNixMn2−xO4 cells there are two visible plateaux, separated with distinct potential jump (~0.5V), which position on Li content perfectly matches the Mn3+ content in the doped cathode material. The lower plateau is related to the Mn3+ → Mn4+ oxidation, while the next of higher voltage, of the dopant Ni2+ → Ni4+ oxidation. The schematic diagrams of relative Mn – Ni electronic levels alignment are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 242-244)

Pages:

65-76

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Tarascon, W.R. McKinnon, F. Coowar, T.N. Bowmer, G. Amatucci, D. Guyomard, J. Electrochem. Soc. 141 (1994) 1421.

DOI: 10.1149/1.2054941

Google Scholar

[2] Y. Shimakawa, T. Numata, J. Tabuchi, J. Solid State Chem. 131 (1997) 138.

Google Scholar

[3] A. de Koch, E. Ferg, R.J. Gumuow, J. Power Sources 70 (1998) 247.

Google Scholar

[4] Y. Shao-Horn, L.R. Middaugh, Solid State Ionics 139 (2001) 13.

Google Scholar

[5] Naoaki Kumagai, Hiroki Ooto, Nobuko Kumagai, J. Power Sources 68 (1997) 600.

Google Scholar

[6] E. Iwata, K. Takahashi, K. Maeda, T. Mouri, J. Power Sources 81-82 (1999) 430.

Google Scholar

[7] R. Thirunakaran, B. Ramesh Babu, N. Kalaiselvi, P. Periasamy, T. Prem Kumar, N.G. Renganathan, M. Raghavan, N. Muniyandi, Bull. Mater. Sci. Vol. 24 No. 1 (2001) 55.

DOI: 10.1007/bf02373583

Google Scholar

[8] J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. McKinnon, S. Colson, J. Electrochem. Soc. 138 (1991) 2859.

Google Scholar

[9] J. Marzec, K. Świerczek, J. Przewoźnik, J. Molenda, D.R. Simon, E.M. Kelder, J. Schoonman, Solid State Ionics 146 (2002) 225.

Google Scholar

[10] J. Molenda, K. Świerczek, W. Kucza, J. Marzec, A. Stokłosa, Solid State Ionics 123 (1999) 155.

Google Scholar

[11] K. Świerczek, J. Marzec, M. Marzec, J. Molenda, Solid State Ionics 157 (2003) 89.

Google Scholar

[12] J. Molenda, W. Ojczyk, M. Marzec, J. Marzec, J. Przewoźnik, R. Dziembaj, M. Molenda, Solid State Ionics 157 (2003) 73.

Google Scholar

[13] W. Weppner, R.A. Huggins, J. Electrochem. Soc. 124 (1977) 1569.

Google Scholar

[14] Y. Liu, T. Fujiwara, H. Yukawa, M. Morinaga, Solar Energy Materiale & Solar Cells 62 (2000) 163.

Google Scholar

[15] J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek, R. Dziembaj, Solid State Ionics 171 (2004) 215.

Google Scholar

[16] 16. J. Molenda, Solid State Ionics 175 (2004) 203.

Google Scholar