Review: Stress-Induced Diffusion and Cation Defect Chemistry Studies of Perovskites

Article Preview

Abstract:

In this paper we review a number of studies of stress-induced diffusional matter transport in perovskites, with an emphasis on creep studies used as a means of studying defect chemistry on the cation sublattices. Studies of diffusional creep in air or fixed atmospheres are reviewed first, and the common characteristics among these perovskites are identified. Creep studies of several perovskiterelated or perovskite-like structures are reviewed next, and the similarities/dissimilarities to perovskites are outlined. The diffusional creep studies in controlled atmosphere are reviewed next, with the emphasis on defect chemistry modeling from creep data. The paper presents a detailed review of two creep studies in oxygen controlled atmosphere that show particularly interesting and remarkedly different behavior from that predicted by standard defect chemistry models. Defect chemistry modeling from creep data is presented for these two cases. The potential and limitations of using creep experiments for studying diffusional matter transport and cation defect chemistry are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 242-244)

Pages:

43-64

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Q. Minh: Journal of the American Ceramic Society Vol. 76 (1993), p.563.

Google Scholar

[2] N. Q. Minh and T. Takanashi: Science and Technology of Ceramic Fuel Cells (Elsevier Science, Amsterdam, Netherlands, 1995).

Google Scholar

[3] U. Balachandran, J. T. Dusek, S. M. Sweeney, R. B. Poeppel, R. L. Mieville, P. S. Maiya, M. S. Kleefisch, S. Pei, T. P. Kobylinski, and C. A. Udovich: Journal of the American Ceramic Society Bulletin Vol. 74 (1995), p.71.

DOI: 10.2172/10166252

Google Scholar

[4] U. Balachandran, T. H. Lee, and S. Wang: Abstracts of the Papers of the American Chemical Society Vol. 225 (2003), p. U859.

Google Scholar

[5] U. Balachandran, T. H. Lee, and S. Wang: International Journal of Hydrogen Energy Vol. 29 (2004), p.291.

Google Scholar

[6] R. M. von Helmholt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer: Physical Review Letters Vol. 71 (1993), p.2331.

Google Scholar

[7] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen: Science Vol. 264 (1994), p.413.

Google Scholar

[8] J. Nowotny and M. Rekas: Journal of the American Ceramic Society Vol. 81 (1998), p.67.

Google Scholar

[9] G. Majkic, L. Wheeler, and K. Salama: Solid State Ionics Vol. 164 (2003), p.137.

Google Scholar

[10] G. Majkic, M. Mironova, L. T. Wheeler, and K. Salama: Solid State Ionics Vol. 167 (2004), p.243.

Google Scholar

[11] G. Majkic, A. J. Jacobson, and K. Salama: Solid State Ionics Vol. 167 (2004), p.255.

Google Scholar

[12] R. E. Cook, K. C. Goretta, J. Wolfenstine, P. Nash, and J. L. Routbort: Acta Materialia Vol. 47 (1999), p.2969.

DOI: 10.1016/s1359-6454(99)00160-3

Google Scholar

[13] M. S. Islam: Journal of Materials Chemistry Vol. 10 (2000), p.1027.

Google Scholar

[14] T. Bretheau, J. Castaing, J. Rabier, and P. Veyssiere: Advances in Physics Vol. 28 (1979), p.835.

Google Scholar

[15] E. Arzt, M. F. Ashby, and R. A. Verrall: Acta Metallurgica Vol. 31 (1983), p. (1977).

Google Scholar

[16] R. Raj and M. F. Ashby: Metallurgical Transactions Vol. 2 (1971), p.1113.

Google Scholar

[17] R. L. Coble: Journal of Applied Physics Vol. 34 (1963), p.1679.

Google Scholar

[18] C. Herring: Journal of Applied Physics Vol. 21 (1950), p.437.

Google Scholar

[19] M. F. Ashby and R. A. Verrall: Acta Metallurgica Vol. 21 (1973), p.149.

Google Scholar

[20] B. Burton: Diffusional Creep of Polycrystalline Materials (Trans. Tech. Publications, 1977).

Google Scholar

[21] R. N. Stevens: Phylosophical Magazine Vol. 23 (1971), p.265.

Google Scholar

[22] M. V. Speight: Acta Metallurgica Vol. 23 (1975), p.779.

Google Scholar

[23] B. Burton: Materials Science and Engineering Vol. 10 (1972), p.9.

Google Scholar

[24] B. Burton: Materials Science and Engineering Vol. 11 (1973), p.337.

Google Scholar

[25] G. E. Dieter: Mechanical Metallurgy (McGraw-Hill, New York, NY, 1986).

Google Scholar

[26] K. L. Murty, F. A. Mohamed, and J. E. Dorn: Acta Metallurgica Vol. 20 (1972), p.1009.

Google Scholar

[27] K. C. Goretta, E. T. Park, J. Guan, U. Balachandran, S. E. Dorris, and J. L. Routbort: Solid State Ionics Vol. 111 (1998), p.295.

Google Scholar

[28] E. T. Park, K. C. Goretta, A. R. De Arellano-Lopez, J. Guan, U. Balachandran, S. E. Dorris, and J. L. Routbort: Solid State Ionics Vol. 117 (1999), p.323.

Google Scholar

[29] J. Wolfenstine: Solid State Ionics Vol. 126 (1999), p.293.

Google Scholar

[30] J. Wolfenstine: Electrochemical and Solid-State Letters Vol. 2 (1999), p.210.

Google Scholar

[31] J. Wolfenstine, P. Huang, and A. Petric: Solid State Ionics Vol. 118 (1999), p.257.

Google Scholar

[32] M. S. Kahn, M. S. Islam, and D. R. Bates: Journal of Physical Chemistry B Vol. 102 (1998), p.3099.

Google Scholar

[33] E. T. Park, P. Nash, J. Wolfenstine, K. C. Goretta, and J. L. Routbort: Journal of Materials Research Vol. 14 (1999), p.523.

Google Scholar

[34] S. Beauchesne and J. P. Poirier: Physics of the earth and planetary interiors Vol. 55 (1989), p.187.

Google Scholar

[35] G. Majkic, L. Wheeler, and K. Salama: Acta Materialia Vol. 48 (2000), p. (1907).

Google Scholar

[36] G. Majkic, L. Wheeler, and K. Salama: Solid State Ionics Vol. 146 (2002), p.393.

Google Scholar

[37] K. Kleveland, A. Wereszczak, T. P. Kirkland, M. A. Einarsrud, and T. Grande: Journal of the American Ceramic Society Vol. 84 (2001), p.1822.

DOI: 10.1111/j.1151-2916.2001.tb00921.x

Google Scholar

[38] K. Kleveland, M. A. Einarsrud, and T. Grande: Journal of the American Ceramic Society Vol. 83 (2000), p.3158.

Google Scholar

[39] A. R. De Arellano-Lopez, U. Balachandran, K. C. Goretta, B. Ma, and J. L. Routbort: Acta Materialia Vol. 49 (2001), p.3109.

Google Scholar

[40] A. Dominguez-Rodriguez, M. Jimenez-Melendo, N. Chen, K. C. Goretta, S. J. Rothman, and J. L. Routbort: Journal de Physique III Vol. 4 (1994), p.253.

Google Scholar

[41] M. Jimenez-Melendo, A. R. De Arellano-Lopez, A. Dominguez-Rodriguez, K. C. Goretta, and J. L. Routbort: Acta Metallurgica et Materialia Vol. 43 (1995), p.2429.

DOI: 10.1016/0956-7151(94)00447-1

Google Scholar

[42] J. A. M. vanRoosmalen and E. H. P. Cordfunke: Journal of Solid State Chemistry Vol. 93 (1991), p.212.

Google Scholar

[43] J. Wolfenstine, T. R. Armstrong, W. J. Weber, M. A. Boling-Risser, K. C. Goretta, and J. L. Routbort: Journal of Materials Research Vol. 11 (1996), p.657.

DOI: 10.1557/jmr.1996.0079

Google Scholar

[44] J. Wolfenstine, K. C. Goretta, and R. E. Cook: Solid State Ionics Vol. 92 (1996), p.75.

Google Scholar

[45] R. S. Gordon: Journal of the American Ceramic Society Vol. 56 (1973), p.147.

Google Scholar