Identification of Mg Vacancy in MgO by Positron Lifetime Measurements and First-Principles Calculations

Article Preview

Abstract:

The formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO is investigated by a combination of positron lifetime measurements and first-principles calculations. The undoped MgO yields the shortest positron lifetime of 140 ps that is shorter than that of a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al dopant concentration and is saturated at around 180 ps. This result clearly indicates that the formation of Mg vacancy is induced by Al dopant. The concentration of the other trivalent impurities can be evaluated using the result of component analysis of positron lifetimes. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 242-244)

Pages:

1-8

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Kirkegaard, M. Eldrup, O.E. Morgensen and N. Pedersen: Computer Phys. Commun. 23 (1981) p.307.

Google Scholar

[2] P. Kirkegaard and M. Eldrup: Computer Phys. Commun. 3 (1972) p.240.

Google Scholar

[3] W. Brandt, in Positron Annihilation, edited by A. T. Stewart and L. O. Roellig, (Academic Press, New York, 1967), p.155.

Google Scholar

[4] B. Bergersen and M. J. Stott: Solid State Commun. 7, (1969) p.1203.

Google Scholar

[5] D. C. Connors and R. N. West: Phys. Lett. A30 (1969) p.24.

Google Scholar

[6] M. Doyama: J. Phys. Soc. Jpn. 33, (1972) p.1495.

Google Scholar

[7] A. Seeger: Appl. Phys. 4 (1974) p.183.

Google Scholar

[8] H. Adachi, M. Tsukada and C. Satoko: J. Phys. Soc. Jpn. 45 (1978) p.875.

Google Scholar

[9] D. E. Ellis and G. S. Painter: Phys. Rev. B 2 (1970) p.2887.

Google Scholar

[10] E. Boroński and R. M. Nieminen: Phys. Rev. B 34 (1986) p.3820.

Google Scholar

[11] M. J. Puska, and R. M. Nieminen: J. Phys. F: Met. Phys. 13 (1983) p.333.

Google Scholar

[12] M. J. Puska, M. Manninen and R. M. Nieminen: Phys. Rev. B 39 (1989), p.7666.

Google Scholar

[13] G. Kresse and J. Furthmuller: Comput. Mater. Sci. 6 (1996), p.15.

Google Scholar

[14] G. Kresse and J. Furthmuller: Phys. Rev. B 54 (1996), p.11169.

Google Scholar

[15] F. Oba, S.R. Nishitani, S. Isotani, H. Adachi and I. Tanaka: Appl. Phys. 90 (2001) p.824.

Google Scholar

[16] I. Tanaka, K. Tatsumi, M. Nakano, H. Adachi and F. Oba: J. Am. Ceram. Soc. 85 (2002) p.68.

Google Scholar

[17] I. Tanaka, T. Mizoguchi, M. Matsui, S. Yoshioka, H. Adachi, T. Yamamoto, T. Okajima, M. Umesaki, W. Y. Ching, Y. Inoue, M. Mizuno, H. Araki and Y. Shirai: Nature Mat. 2 (2003), p.541.

DOI: 10.1038/nmat939

Google Scholar

[18] R. Pareja, M. A. Pedrosa and R. Gonzáles: in Positron Annihilation, edited by P. C. Jain, R. M. Singru and K. P. Gopinathan (World Scientific, Singapore, 1985), p.708.

Google Scholar