Static and Dynamic Heterogeneities in Supercooled SiO2

Article Preview

Abstract:

Static and Dynamic heterogeneities in supercooled SiO2 have been investigated in the models containing 3000 particles obtained by cooling from the melt with the pair interatomic potentials, which have the Morse type part for the short-range interaction. The evolution of structure of the system upon cooling was presented and analyzed in details through the changes in the partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and structural defects. Calculation presented that the temperature dependence of diffusion constant D of components in the system shows an Arrhenius law at low temperatures and it shows a power law, γ ) ( C T T D − ∝ , at high temperatures. The critical temperature Tc is equal to 4200 K and the exponent γ is close to 0.50. In order to study the dynamical heterogeneities in the system, we evaluated the non- Gaussian parameter for the self-part of the van Hove correlation function and luster-size distributions of most mobile or immobile particles in the model. We compared the PRDFs for the 10% most mobile or immobile particles with the corresponding mean ones. We have found that the most mobile and immobile particles form clusters and mean cluster size grows with decreasing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 242-244)

Pages:

77-94

Citation:

Online since:

September 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.V. Woodcock, C.A. Angell and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976).

Google Scholar

[2] Liping Huang, L. Duffrene and J. Kieffer, J. Non-Cryst. Solids 349, 1 (2004).

Google Scholar

[3] K. Vollmayr, W. Kob and K. Binder, Phys. Rev. B 54, 15808 (1996).

Google Scholar

[4] N. Kuzuu, H. Yoshie, Y. Tamai and C. Wang, J. Non-Cryst. Solids 349, 319 (2004).

Google Scholar

[5] S. Sen, R.L. Andrus, D.E. Baker and M. T. Murtagh, Phys. Rev. Lett. 93, 125902 (2004).

Google Scholar

[6] C. Oligschleger, Phys. Rev. B 60, 3182 (1999).

Google Scholar

[7] N.T. Huff, E. Demiralp, T. Cagin and W. A. Goddard III, J. Non-Cryst. Solids 253, 133 (1999).

Google Scholar

[8] A. Takada, P. Richet, C.R.A. Catlow and G.D. Price, J. Non-Cryst. Solids 345 & 346, 224 (2004).

Google Scholar

[9] D.K. Belashchenko, Russian Chem. Rev. 66, 733 (1997).

Google Scholar

[10] T.F. Soules, J. Chem. Phys. 71, 4570 (1979).

Google Scholar

[11] S. Tsuneyuki, M. Tsukada, H. Aoki and Y. Matsui, Phys. Rev. Lett. 61, 869 (1988).

Google Scholar

[12] S. Tsuneyuki and Y. Matsui, Phys. Rev. Lett. 74, 3197 (1995).

Google Scholar

[13] B.W.H. van Beest, G.L. Kramer, R.A. van Santen, Phys. Rev. Lett. 54, 1955 (1990).

Google Scholar

[14] U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr and H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).

DOI: 10.1103/physrevlett.81.2727

Google Scholar

[15] S.A. Reinsberg, X.H. Qiu, M. Wilhelm, H.W. Spiess and M.D. Ediger, J. Chem. Phys. 114, 7299 (2001).

Google Scholar

[16] X.H. Qiu and M.D. Ediger, J. Chem. Phys. B 107, 459 (2003).

Google Scholar

[17] G. Adam and J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

Google Scholar

[18] J.P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704 (2002).

Google Scholar

[19] J.P. Garrahan and D. Chandler, Proc. Nat. Acad. Soc. 100, 9710 (2003).

Google Scholar

[20] W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, and S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997).

DOI: 10.1103/physrevlett.79.2827

Google Scholar

[21] C. Donati, S.C. Glotzer, P.H. Poole, W. Kob, and S.J. Plimpton, Phys. Rev. E 60, 3107 (1999).

Google Scholar

[22] K. Vollmayr-Lee, W. Kob, K. Binder, and A. Zippelius, J. Chem. Phys. 116, 5158 (2002).

DOI: 10.1063/1.1453962

Google Scholar

[23] B.V.R. Tata, P.S. Mohanty, and M.C. Valsakumar, Phys. Rev. Lett. 88, 018302 (2002).

Google Scholar

[24] Vo Van Hoang, to be published elsewhere.

Google Scholar

[25] M. Vogel and C. Glotzer, Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica, cond-mat/0402427.

Google Scholar

[26] M. Vogel and C. Glotzer, Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica, cond-mat/0404733.

Google Scholar

[27] L.I. Tatarinova, The structure of solid amorphous and liquid substances, Moscow, Nauka, (1983).

Google Scholar

[28] R.L. Mozzi and B.E. Warren, J. Appl. Cryst. 2, 164 (1969); 3, 251 (1970).

Google Scholar

[29] J. Horbach and W. Kob, Phys. Rev. B 60, 3169 (1999).

Google Scholar

[30] R.F. Pettifer, R. Dupree, I. Farnan, and U. Sternberg, J. Non-Cryst. Solids 106, 408 (1988).

Google Scholar

[31] Vo Van Hoang, D.K. Belashchenko and Vo Thi Mai Thuan, Physica B 348, 249 (2004).

Google Scholar

[32] D.K. Belashchenko and O.I. Ostrovski, Inorganic Materials 40, 241 (2004).

Google Scholar

[33] Vo Van Hoang and Suhk Kun Oh, Physica B 352, 342 (2004).

Google Scholar

[34] J.C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984).

Google Scholar

[35] G. Brebec, R. Seguin, C. Sella, J. Bevenot, and J.C. Martin, Acta Metall. 28, 327 (1980).

DOI: 10.1016/0001-6160(80)90168-6

Google Scholar

[36] K.U. Hess, D.B. Dingwell, and E. Rossler, Chem. Geol. 128, 155 (1996).

Google Scholar

[37] W. Gotzer, in Liquids, Freezing and the Glass Transition, Edited by J.P. Hansen, D. Levesque and J. Zinn-Justin, Les Houches, Session LI, 1989 (North-Holland, Amsterdam, 1991).

Google Scholar

[38] R. Bruckner, J. Non-Cryst. Solids 5, 123 (1970).

Google Scholar

[39] J.P. Hansen and I.R. McDonald, Theory of simple Liquids (Academic, London, 1986).

Google Scholar

[40] A. Kerrache, V. Teboul, D. Guichaoua and A. Monteil, J. Non-Cryst. Solids 322, 41 (2003).

DOI: 10.1016/s0022-3093(03)00170-4

Google Scholar

[41] It must be taken the exact percentage of particles detected from a tail of more mobile ones in the atomic displacement distribution, which is commonly equal to 5%. However, all results presented in the text are qualitatively the same if the 5% are replaced by 10%, but 10% include enough particles to obtain good statistics when examining their spatial correlation.

Google Scholar