Oxygen Diffusion in La2-xSrxCuO4-δ: Molecular Dynamics Study

Article Preview

Abstract:

The oxygen mobility in La2-xSrxCuO4-δ (x=0.15; 0.6; 1) was studied by the Molecular Dynamics (MD) technique. The parent layered La2CuO4 crystal structure has been shown to give rise to a strong anisotropy of oxygen diffusion coefficient in the lattice. Equatorial oxygen sites in(CuO2) layers were found to provide the paths of the fast oxygen transport in the structure, while the axial ones in (La2O2) blocks were substantially less mobile. The influence of the dopant concentration on structural properties and energetic characteristics of the oxygen migration are discussed. Analysis of the ion trajectories obtained during the simulation allowed explaining the observed dependence of the oxygen diffusion activation energies on the strontium content and provided further insight into the mechanism of oxygen diffusion in the oxides.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 242-244)

Pages:

27-42

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. Ormerod: Chem. Soc. Rev. Vol. 32 (2003), p.17.

Google Scholar

[2] O. Yamamoto: Electrochim. Acta Vol. 45 (2000), p.2423.

Google Scholar

[3] J.M. Ralph, A.C. Schoeler, M. Krumpelt: J. Mater. Sci. Vol. 36 (2001), p.1161.

Google Scholar

[4] B.C.H. Steele: Solid State Ionics Vol. 134 (2000), p.3.

Google Scholar

[5] S.M. Haile: Acta Mater. Vol. 51 (2003), p.5981.

Google Scholar

[6] C.H. Chen, H.J.M. Bouwmeester, R.H.E. van Doorn, H. Kruidhofand, A.J. Burgraaf: Solid State Ionics Vol. 98 (1997), p.7.

Google Scholar

[7] M.H.R. Lankhorst, H.J.M. Bouwmeester, H. Verweij: J. Solid State Chem. Vol. 133 (1997), p.555.

Google Scholar

[8] X.J. Chen, K.A. Khor, S.H. Chan: J. Power Sources Vol. 123 (2003), p.17.

Google Scholar

[9] Y.K. Lee, J.Y. Kim, Y.K. Lee, Y. Kim, H.S. Moon, J.W. Park, C.P. Jacobson, S.J. Visco: J. Power Sources Vol. 115 (2003), p.219.

Google Scholar

[10] T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, T. Kato: Solid State Ionics Vol. 127 (2000), p.55.

Google Scholar

[11] D.J.L. Hong, D.M. Smyth: J. Solid State Chem. Vol. 102 (1993), p.350.

Google Scholar

[12] L. Shen, P.A. Salvador, T.O. Mason: J. Am. Ceram. Soc. Vol. 77 (1994), p.81.

Google Scholar

[13] E.J. Opila, H.L. Tuller: J. Am. Ceram. Soc. Vol. 77 (1994), p.2727.

Google Scholar

[14] K. Sreedhar, P. Ganguly: Phys. Rev. B Vol. 41 (1990), p.371.

Google Scholar

[15] H.C. Yu, K.Z. Fung: Mater. Res. Bull. Vol. 38 (2003), p.231.

Google Scholar

[16] G.N. Mazo, S.N. Savvin, E.V. Mychka, Yu.A. Dobrovol'skii, L.S. Leonova: Russ. J. Electrochem. Vol. 41 (2005), p.448.

Google Scholar

[17] K.K. Singh, P. Ganguly, J.B. Goodenough: J. Solid State Chem. Vol. 52 (1984), p.254.

Google Scholar

[18] J.B. Goodenough, J. -S. Zhou, J. Chan: Phys. Rev. B Vol. 47 (1993), p.5275.

Google Scholar

[19] H. Kanai, J. Mizusaki, H. Tagawa, S. Hoshiyama, K. Hirano, K. Fujita, M. Tezuka, T. Hashimoto: J. Solid State Chem. Vol. 131 (1997), p.150.

DOI: 10.1006/jssc.1997.7377

Google Scholar

[20] G. Demazeau, F. Tresse, Th. Plante, B. Chevalier, J. Etourneau, C. Michel, M. Hervieu, B. Raveau, P. Lejay, A. Sulpice, T. Tournier: Physica C Vol. 153-155 (1988), p.824.

DOI: 10.1016/s0921-4534(88)80107-2

Google Scholar

[21] J.C. Grenier, A. Wattiaux, N. Lagueyte, J.C. Park, E. Marquestant, J. Etourneau, M. Pouchard: Physica C, Vol. 173 (1991), p.139.

DOI: 10.1016/0921-4534(91)90360-b

Google Scholar

[22] C. Chaillout, S.W. Cheong, Z. Fisk, M.S. Lehmann, M. Marezio, B. Morosin, J.E. Schriber: Physica C Vol. 158 (1989), p.183.

DOI: 10.1016/0921-4534(89)90315-8

Google Scholar

[23] Y. Idemoto, K. Fueki: Jpn. J. Appl. Phys. Vol. 29 (1990), p.2725.

Google Scholar

[24] J.B. Torrance, Y. Tokura, A.I. Nazzal, A. Bezinge, T.C. Huan, S.S.P. Parkin: Phys. Rev. Lett. Vol. 61 (1988), p.1127.

Google Scholar

[25] B.J. Alder, T.E. Wainwright: J. Chem. Phys. Vol. 27 (1957), p.1208.

Google Scholar

[26] B.J. Alder, T.E. Wainwright: J. Chem. Phys. Vol. 31 (1959), p.459.

Google Scholar

[27] A.K. Ivanov-Schitz, B.J. Mazniker, E.S. Povolotskaya: Solid State Ionics Vol. 159 (2003), p.63.

Google Scholar

[28] M.S. Islam, M. Cherry, C.R.A. Catlow: J. Solid State Chem. Vol. 124 (1996), p.230.

Google Scholar

[29] O. Borodin, D. Bedrov, G.D. Smith: Macromolecules Vol. 34 (2001), p.5687.

Google Scholar

[30] I. Stich, J.D. Gale, K. Terakura, M.C. Payne: Chem. Phys. Lett. Vol. 283 (1998), p.402.

Google Scholar

[31] M. Boero, M. Parrinello, K. Terakura, H. Weiss: Mol. Phys. Vol. 100 (2002), p.2935.

Google Scholar

[32] M.S. Islam: J. Mater. Chem. Vol. 10 (2000), p.1027.

Google Scholar

[33] M.J. Akhtar, C.R.A. Catlow, S.M. Clark, W.M. Temmerman: J. Phys. C: Solid State Phys. Vol. 21 (1988), p. L917.

Google Scholar

[34] N.L. Allan, W.C. Mackrodt: J. Am. Ceram. Soc. Vol. 73 (1990), p.3175.

Google Scholar

[35] C.R.A. Catlow, M.S. Islam, X. Zhang: J. Phys.: Condens. Matter Vol. 10 (1998), p. L49.

Google Scholar

[36] R.C. Baetzold: Phys. Rev. B Vol. 38 (1988), p.11304.

Google Scholar

[37] M.S. Islam, R.C. Baetzold: Phys. Rev. B Vol. 40 (1989), p.10926.

Google Scholar

[38] S.L. Chaplot: Phys. Rev. B Vol. 42 (1990), p.2149.

Google Scholar

[39] X. Zhang, C.R.A. Catlow: Phys. Rev. B Vol. 46 (1992), p.457.

Google Scholar

[40] J.D. Fan, G.L. Zhao, T. Edis, Y.M. Malozovsky: Phys. Rev. B Vol. 56 (1997), p.10747.

Google Scholar

[41] M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon Press, Oxford 1987).

Google Scholar

[42] S.L. Chaplot, W. Reichardt, L. Pintschovius, N. Pyka: Phys. Rev. B Vol. 52 (1995), p.7230.

Google Scholar

[43] W.E. Pickett: Rev. Mod. Phys. Vol. 61 (1989), p.433.

Google Scholar

[44] P.J.D. Lindan, M.J. Gillan: J. Phys.: Condens. Matter Vol. 5 (1993), p.1019.

Google Scholar

[45] S.L. Chaplot: Phys. Rev. B Vol. 37 (1988), p.7435.

Google Scholar

[46] E. Rampf, V. Schröder, F.W. de Wette, A.D. Kulkarni, W. Kress: Phys. Rev. B Vol. 48 (1993), p.10143.

Google Scholar

[47] W. Smith, I.T. Todorov, M. Leslie: Z. Kristallogr., Vol. 220 (2005), p.563.

Google Scholar

[48] J.B. Goodenough, G. Demazeau, M. Pouchard, P. Hagenmuller: J. Solid State Chem. Vol. 8 (1973), p.325.

Google Scholar

[49] H.H. Wang, U. Geiser, R.J. Thorn, K.D. Carlson, M.A. Beno, M.R. Monaghana, T.J. Allen, R.B. Proksch, D.L. Stupka, W.K. Kwok, G.W. Crabtree, J.M. Williams: Inorg. Chem. Vol. 26 (1987), p.1190.

DOI: 10.1002/chin.198728017

Google Scholar

[50] F. Fueki, Y. Idemoto, M. Sugiyama: Ann. Chim. Fr. Vol. 16 (1991), p.423.

Google Scholar

[51] J.L. Routbort, S.L. Rothman, B.K. Flandermeyer, L.J. Nowicki, J.E. Backer: J. Mater. Res. Vol. 3 (1988), p.116.

Google Scholar

[52] E.J. Opila, H.L. Tuller, B.J. Wuensch, J. Maier: J. Am. Ceram. Soc. Vol. 76 (1993), p.2363.

Google Scholar

[53] J.A. Kilner, R.J. Brook: Solid State Ionics Vol. 6 (1982), p.237.

Google Scholar

[54] W. Humphrey, A. Dalke, K. Schulten: J. Molec. Graphics Vol. 14 (1996), p.33.

Google Scholar