Stress Relaxation Mechanisms during Cd21Ni5 Intermetallic Growth under High Hydrostatic Pressure

Article Preview

Abstract:

Stress relaxation processes accompanying intermetallic growth during reactive diffusion between Cd and Ni have been studied by the methods of optical and scanning electron microscopy, provided with X-ray microanalysis. The experiments were carried out with the two-layer Cd-Ni samples at 250 and 280oC under hydrostatic pressures 350-900 MPa. The observed processes have been compared with those occurred at low pressures to demonstrate that the mechanisms of stress relaxation and thus the kinetics of intermetallic growth essentially depend on applied hydrostatic pressure. New mechanisms of stress relaxation were found, such as Cd extrusion and Cd whisker growth, which accompanied formation of Cd21Ni5 compound. It is shown, that the whisker growth is more probable at lower temperatures when the grain size is smaller, and the stress gradient, which support a driving force for whisker formation, is higher. An atomic mechanism for whisker growth, based on diffusion climbing of dislocation loops produced by Bardeen-Herring source for building new atomic layers, has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-132

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ya. E. Geguzin: Diffusion zone (Nauka, Moscow, 1979 - in Russian).

Google Scholar

[2] J. Philibert: Defect and Diffusion Forum Vol. 129-130 (1996), p.3.

Google Scholar

[3] D. L. Beke: Defect and Diffusion Forum Vol. 129-130 (1996), p.9.

Google Scholar

[4] L. N. Paritskaya and V. V. Bogdanov: Defect and Diffusion Forum Vol. 129-130 (1996), p.79.

Google Scholar

[5] A. S. Ostrovsky, B. S. Bokstein: Appl. Surf. Sci. Vols. 175-176 (2001), p.312.

Google Scholar

[6] E. E. Glickman, Microelectronic Engineering, Vol. 64 (2002), p.383.

Google Scholar

[7] M. Hansen and K. Anderko: Constitutions of Binary Alloys (McGraw-Hill Publ. Co, NY, 1958).

Google Scholar

[8] L.N. Paritskaya, V.V. Bogdanov, Yu.S. Kaganovskii, W. Lojkowski, J. Jun and A. Presz: Interface Sci. Vol. 8 (2000), p.77.

DOI: 10.1023/a:1008739521785

Google Scholar

[9] Yu. S. Kaganovskii, L. N. Paritskaya, V. V. Bogdanov and A. O. Grengo: Acta mater. Vol. 45 (1997), p.3927.

DOI: 10.1016/s1359-6454(97)00036-0

Google Scholar

[10] L.N. Paritskaya, Yu.S. Kaganovskii, V.V. Bogdanov and W. Lojkowski: Defect and Diffusion Forum Vol. 208-209 (2002), p.151.

Google Scholar

[11] R. M. Fisher, L.S. Darken and K.G. Carroll: Acta. Met. Vol. 2 (1954), p.368.

Google Scholar

[12] Yu.S. Kaganovskii, L.N. Paritskaya, W. Lojkowski: Surf. Sci. Vols. 454-456 (2000), p.591.

Google Scholar

[13] A. A. Griffith: Phil. Trans. Roy. Soc. London, Ser. A Vol. 221 (1920), p.163.

Google Scholar

[14] G.T. Galyon: A History of Tin Whisker Theory: 1948-2004 (IBM eSG Group, Poughkeepsie, NY, 2005).

Google Scholar

[15] K. N. Tu: Acta Met. Vol. 21 (1973), p.347.

Google Scholar

[16] U. Lindborg: Acta met. Vol. 24 (1976), p.18.

Google Scholar

[17] K. N. Tu: Phys. Rev. B Vol. 49(3) (1994), p. (2030).

Google Scholar

[18] B. Z. Lee and D. N. Lee: Acta met. Vol. 46(10) (1998), p.370.

Google Scholar

[19] W. J. Choi, T. Y. Lee and K. N. Tu: Proc. IEEE Electric Comp. (2002), p.628.

Google Scholar

[20] J. P. Hirth and J. Lothe: Theory of Dislocations (McGraw-Hill, NY, 1968).

Google Scholar

[21] E. S. Wajda, G. A. Shirn and H. B. Huntington: Acta met. Vol. 3 (1955), p.39.

Google Scholar

[22] W. Gust, S. Mayer, A. Bögel and B. Predel: Journal de Physique Vol. 46 (1985), p. C4.

Google Scholar

[23] J. Friedel: Dislocations (Pergamon Press, London-NY-Paris, 1967).

Google Scholar