Defect and Diffusion Forum Vols. 297-301

Paper Title Page

Abstract: In order to improve the durability and performance of molds and tools, diverse methods of surface modification are used where the adhesion strength between a substrate and coating plays an important role. To improve adhesion strength, a combined surface modification method is often utilized. In this study, adhesion strength and microstructure of various combined surface modifications (i.e., ion-nitriding, Cr intermediate layer, CrN layer and nitrogen ion- implantation) were examined on STS420. Phase constituents, microstructure, adhesion strength and hardness of coating-substrate system with combined surface modification were examined by using optical microscopy, X-ray diffraction, transmission electron microscopy, scratch test, and nano-indentation. The highest adhesion strength was observed when CrN coating was formed by nitrogen implantation on ion-nitrided substrate with a Cr-intermediate layer. Influence of processing sequence and combination is related to microstructural observations and adhesion strength.
1334
Abstract: Deformation-enhanced diffusion in single-crystalline Ni-based superalloy specimens have been investigated under the conditions of hard cyclic viscoplastic tension-compression deformation. The chemical composition of phases before and after cyclic deformation was investigated by filed-emission scanning electron microscopy. At low strain amplitude values (0-0.05%; 0-0.2%; 0-0.5%) the material shows upscaled viscoelastic behavior and microstructural stability. At the increase of strain amplitude in the γ+γ’-phase (0-1%), the Ni, Re and Co content decreases, whereas Al and Mo content increases significantly. On the contrary, in the single γ’-phase area, the Ni and Co content was increased, which was accompanied by a decrease of Nb, Cr, Ta and Al content. The length of dendrite arms was significantly decreased as compared to primary dendrite arms and γ+γ’-rafts were formed parallel to the stress axis direction. As a result of the deformation-enhanced, diffusion the necking of dendrites accompanied with longitudinal cracking by the dendrite axis and cross-sectional radial cracking by interdendritic region of single crystalline specimen occurs.
1340
Abstract: The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5x10-5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials.
1346
Abstract: The effect of different carbonitride forming elements on the oxidation performance of a 17Cr steel has been investigated. Whilst C and N are shown to have deleterious effects on the formation of protective oxides on unstabilised steel, a relationship has been found between the strength of the carbonitride former and the relative improvement in the oxidation performance. Furthermore, the appearance of the austenite phase has harmful influence on the oxidation resistance of the ferritic steel because the diffusion rate of Cr, Fe and so on is much slower in the austenitic structure than in the ferritic structure. The improvement is the most pronounced when the stabilizing element is Zr. The formation of the scale observed using transmission electron microscopy has been shown to be strongly controlled by the inward diffusion of the oxidant.
1354
Abstract: In this paper, examples of some of the most challenging features of GB diffusion are considered covering selected problems, strongly related to the research activity at our Laboratories and to the scientific interest of Boris Bokstein too. The following problems (and still open questions related to them) are addressed: i) Diffusion in a random network of grain boundaries with different structures and diffusion coefficients in polycrystalline materials; ii) Segregation effects; iii) Stress effects and iv) Effect of the presence of moving and/or non-equilibrium grain boundaries.
1362
Abstract: There are a number of well-known empirical relations for diffusion in solids. For example the proportionality between the self-diffusion activation energy and melting point or between the entropy of the diffusion and the ratio of activation energy and the melting point (Zener rule) are perhaps the best known ‘rules of thumb’. We have shown earlier in our Laboratory, that these relations are direct consequences of the similarity of interatomic potentials seen by ions in solids. On the basis of this, similar relations were extended for impurity and self diffusion in binary solid alloys. In this paper, results for binary liquid mixtures will be reviewed. First a minimum derivation of the temperature dependence of the self-diffusion coefficient, D, is presented (minimum derivation in the sense that it states only that the reduced (dimensionless) D should be a universal function of the reduced temperature), using the similarity of interatomic potentials and dimensional analysis. Then the extension of this relation for determination of the pressure and composition dependence of the self-diffusion coefficients is described using pressure and composition dependent scaling parameters (melting point, atomic volume and mass). The obtained universal form (valid for binary liquid alloys) is very useful for the estimation of the temperature, composition and pressure dependence of the self-diffusion coefficients. Finally, the relation for the ratio of the impurity and self-diffusion coefficients is derived.
1371
Abstract: Studies of tracer diffusion in silicides of iron and molybdenum mainly from our laboratory are reviewed. For three compositions of the DO3-structured Fe3Si tracer diffusion data of Fe and Ge are available. Fe diffusion is relatively fast and increases with Si content. Ge diffusion, which mimics Si self-diffusion, is fairly slow and almost independent of composition. A Mössbauer study of Fe diffusion revealed nearest-neighbour jumps. Positron annihilation and high pressure diffusion data indicate that, in addition to isolated vacancies, vacancy pairs also contribute to Fe diffusion. Ge and Si diffusion is presumably restricted to the Si sublattice. Tracer diffusion of Fe and Ge has been studied for B20-structured FeSi with the conventional tracer technique. Tracer diffusion studies after implantation of 31Si (half-life 2.6 hours) performed at the IGISOL facility in Jyväskylä, Finland, show that Ge and Si diffusion have similar diffusivities. Fe diffusion rates are considerably slower than those of Si and Ge. Tracer data of Mo, Ge and Si diffusion are available for both principal directions of the tetragonal C11b-structured molybdenum disilicide (MoSi2). For all three kinds of atoms diffusion perpendicular to the tetragonal axis is faster than parallel to it. Mo diffusion in both principal directions is by orders of magnitude slower than Si and Ge diffusion. The huge asymmetry between Mo and Si or Ge suggests that diffusion of both constituents is restricted to their own sublattice. Positron annihilation studies show formation of thermal vacancies on the Si sublattice. This suggests that Si and Ge diffusion proceed by a vacancy mechanism in the Si sublattice of MoSi2. The anisotropy ratio of Si self-diffusion is attributed to a high mobility of vacancies in the Si double layers perpendicular to the tetragonal axis.
1377
Abstract: Air oxidation behavior of a Ti6Al7Nb alloy was examined over the temperature range of 873 –1173 K for different time intervals ranging in between 12 and 72 h. The rate of oxidation evaluated according to the weight gain measurements, fitted parabolic kinetics by yielding oxidation activation energy of 226 kJ/mol. Rutile and anatase modifications of TiO2 formed on the surface as the result of air oxidation. Oxidation temperatures higher than 923 K encouraged rutile formation rather than anatase. As temperature of oxidation was increased, the thickness of the oxide layer increased. Thicker oxide layer provided higher surface hardness and better protection against a corrosive media (5 M HCl solution) was provided.
1389
Abstract: In the present study, the effect of oxidation on the structure and the hardness of ternary (Zr, Hf)N coatings, whose Hf content was varied between 0 and 21 wt.%, has been systematically examined. Coatings were applied on AISI D2 tool steel plates by arc physical vapor deposition (PVD). Oxidation was conducted at 400oC for times up to 12 h in air. Ternary (Zr, Hf)N coatings are found to be more susceptible towards oxidation compared to binary ZrN coating. Oxidation caused the formation of a mixed oxide layer composed of ZrO2 and HfO2. Formation of oxide layer was accompanied by a reduction in hardness. Hardness values of Hf free and Hf alloyed (Zr, Hf)N coatings were very close to each other both in as-deposited and oxidized states.
1395
Abstract: Equilibrium and non-equilibrium molecular dynamics calculations of thermal conductivity coefficient are presented for bulk systems of InSb, using an effective two- and three-body inter atomic potential which demonstrated to be very transferable. In the calculations, the obtained coefficients were comparable to the experimental data. In the case of equilibrium simulations a Green-Kubo approach was used and the thermal conductivity was calculated for five temperatures between 300 K and 900 K. For the non equilibrium, or direct method, which is based on the Fourier’s law, the thermal conductivity coefficient was determined at a mean temperature of 300K. In this case it was used a pair of reservoirs, placed at a distance L from each other, and with internal temperatures fixed in 250 K, for the cold reservoir, and 350 K for the hot one. In order to obtain an approach to an infinite system coefficient, four different values of L were used, and the data was extrapolated to L→∞.
1400

Showing 211 to 220 of 234 Paper Titles