Diffusion Mechanism in XSi2 and X5Si3 (X= Nb, Mo, V) Phases

Article Preview

Abstract:

In view of the importance of the silicides in the high temperature applications, the diffusion behaviour is compared in different systems for two types of silicides, XSi2 and X5Si3 (X=Nb, Mo, V). Atomic mechanism of diffusion and defects present in the structure are discussed. In both the phases, Si has faster diffusion rate than the metal species. This is expected from the nearest neighbour (NN) bonds present in the XSi2 phase but rather unusual in the X5Si3 phase. Relative mobilities of the species calculated indicate the presence of high concentration of Si antisites. Moreover, the concentration of the defects is different in different systems to find different diffusion rates.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

459-464

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Yamamoto, H. Miyanaga, T. Amazawa, T. Sakai: IEEE Transactions On Electron Devices. Vol 32 (1985), p.1231.

Google Scholar

[2] S.S. Simeonov, E.I. Kafedjiiska, A.L. Guerassimov: Thin Solid Films. Vol 115 (1984), p.291.

DOI: 10.1016/0040-6090(84)90092-0

Google Scholar

[3] G. Kano, S. Takayanagi: IEEE Transactions On Electron Devices. Vol 14 (1967), p.822.

Google Scholar

[4] V.Q. Ho: J Electronic Matl. Vol 16 (1987), p.329.

Google Scholar

[5] M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, Y. Tonooka: Proceedings of SPIE. (2009), p.7379.

Google Scholar

[6] E. Schubert, F. Frost, B. Ziberi, G. Wagner, H. Neumann, B. Rauschenbach: J Vac Sc & Tech: Microelectronics and Nanometer Structures. Vol 23 (2005), p.959.

DOI: 10.1116/1.1924610

Google Scholar

[7] H. Takenaka, H. Ito, T. Haga, T. Kawamura: J Synchrotron Rad. Vol 5 (1998), p.708.

Google Scholar

[8] I. Nedelcu,  R.W.E. van de Kruijs, A.E. Yakshin,  F. Bijkerk: J Appl Phy. Vol 103 (2008), p.083549.

DOI: 10.1063/1.2907964

Google Scholar

[9] E. Heikinheimo, A. Kodentsov, J. A. Van Beek, J. T. Klomp and F. J. J. Van Loo: Acta Metall Mater. Vol 40 (1992), p.111.

DOI: 10.1016/0956-7151(92)90270-o

Google Scholar

[10] J.J. Petrovic, R.E. Honnell, W.S. Gibbs: US patent 4970179.

Google Scholar

[11] M.G. Mendiratta, D.M. Dimiduk: Mater Res Soc Symp Proc. Vol 133 (1989), p.441.

Google Scholar

[12] M.G. Mendiratta, D.M. Dimiduk: Scripta Metall. Vol 25 (1991), p.237.

Google Scholar

[13] P.R. Subramanian, T.A. Parthasarathy, M.G. Mendiratta, D.M. Dimiduk: Scripta Metall. Vol 32 (1995), p.1227.

Google Scholar

[14] M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, H.A. Lipsitt: JOM. Vol 48 (1996), p.39.

DOI: 10.1007/bf03221361

Google Scholar

[15] B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J.C. Zhao: Metall Mater Trans A. Vol 34A (2003), p. (2043).

Google Scholar

[16] S. Prasad, A. Paul: Acta Materialia. Vol 59  (2011), p.1577.

Google Scholar

[17] S. Prasad and A. Paul: Intermetallics. Vol 19 (2011), p.1191.

Google Scholar

[18] S. Prasad and A. Paul, Journal of Phase Equilibria and Diffusion, Vol. 32 (2011), p.212.

Google Scholar

[19] M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Riihimäki, S. Divinski, W. Frank, J. Räisänen, H. Mehrer: Phil Mag. Vol 84 (2004), p.737.

DOI: 10.1080/14786430310001641966

Google Scholar